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Introduction

Performance

Is it benefiting from:

• Vectorization techniques

• Pre-compiled models

Flexibility

Is it easy to define:

• Non-standard models

• Arbitrary protocols
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Want your simulator to attract as many neuro-researchers as possible.



Continued…

Brian 2 solves this trade-off.

➢Flexibility: User-written Python script

• No limit on the experiment structure

➢Performance: Code generation

• Transform high-level model into low-level executable code
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Design Implementation

1. Non-standard models

• Mathematical equations should be explicitly written.

2. Complete computational experiment

• Models must interact with general control flow.

3. Efficient code generation

• Generated code can integrate into the simulation flow.

4. Extensibility of code

• Code can be extended either at high- or low-level.
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Case Study 1: Pyloric Network

Generate a stereotypical triphasic motor pattern.
(a) Circuit schematic

(b) Simulated neuron activity

(c) Simulated neuron activity (biologically detailed)
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Continued…

Neuron model is written in differential equation.

7

Calcium trace increases at each spike.

Calcium trace decays.

Conductances are regulated by trace difference.



Continued…

Nonlinear (graded) fast synapse
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Nonlinear (graded) slow synapse



Continued…

Set up initial values.
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Connectivity pattern



Continued…

➢Implement in a language like C++?

• Requires significant technical skill

▪ Justified if iteration is done thousands of times

• Difficult to adapt for other purposes

➢Use description language such as LEMS / NeuroML2?

• Like Brian2, but somewhat more verbose

➢Use NMODL language in NEURON simulator?

• Requires learning new language

➢Use NESTML language in NEST simulator?

• Doesn’t support graded synapse
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Comparison to other approaches
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Case Study 2: Ocular Model
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Two antagonistic muscles are modelled mechanically as elastic spring with friction.
(a) Circuit schematic

(b) Simulated activity of sensory neurons (black) & motor neurons (blue, orange)



Continued…

Position of eye follows 2nd-order differential equation.
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Stimulus moves in a stochastic process.

Muscles are controlled by two motoneurons.



Continued…

Retinal neurons receive visual input.
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Retinal neurons project on motoneuron to control muscle.



Continued…

➢Use language such as LEMS / NeuroML2 / NMODL?

• Same as “Case Study 1”
➢Use NESTML language in NEST simulator?

• Doesn’t support continuous interaction between single environment & 
multiple neurons
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Comparison to other approaches
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Case Study 3: Threshold Finding

15

Determine the voltage firing threshold of a neuron.
(a) Flowchart of bisection algorithm

(b) Refinement of threshold over iterations (three different Na densities)



Continued…

Set initial estimate and step width.
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Perform the bisection for a certain #iteration.



Continued…

➢Use language such as LEMS / NeuroML2?

• Can only specify duration and step size

➢Use NEST simulator?

• Like Brian2; use SLI or Python

➢Use NEURON simulator?

• Like Brian2; use HOC or Python
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Comparison to other approaches
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Case Study 4: Real-time Audio
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Detect the pitch based on autocorrelation of a signal.



Continued…
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Two modes:

(1) Runtime mode:

• Python controls overall simulation.

• It calls compiled code objects to do heavy lifting.

• Overhead: Repeated switching from Python to another language

▪ Justified if flexibility is preferred

(2) Standalone mode:

• Low-level code is generated.

• It controls overall simulation.

• Able to generate code for target platform (GPU)



Continued…

➢Use language such as LEMS / NeuroML2?

• Not possible

➢Use NEST simulator?

• Utilize MUSIC framework to couple multiple simulators

• Cannot apply continuous-valued inputs

➢Use NEURON simulator?

• Can include user-written C code

• No documented mechanism to link external libraries
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Comparison to other approaches
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Drawbacks

1. Explicit model definitions

• Difficult to design tools to programmatically inspect a model

▪ Rebuttal: Reduce risk of difference between implementation & description

2. Tightly integrated simulation flow

• Difficult to reuse or programmatically compare a model

▪ Rebuttal: Reduce complexity & chance of errors

3. No scaling up

• Lack of support for running large networks over multiple machines

▪ Rebuttal: Most people use smaller networks for parameter exploration.
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Continued…

4. Rudimentary multi-compartmental models

• Not as mature as NEURON or GENESIS simulator

5. Automated optimization techniques

• Generate optimization for specialization of models
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CUBA benchmark



Questions?

Comments?

Concerns?
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