..
°
® o0 ®

° o, °
........
e o o

Brian 2
An Intuitive & Efficient Neural Simulator

Marcel Stimberg!, Romain Brette!, Dan FM Goodman?

1Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France

’Department of Electrical and Electronic Engineering, Imperial College London, UK




Overview

* Introduction

* Design implementation

e Case study 1: Pyloric network

e Case study 2: Ocular model

e Case study 3: Threshold finding
* Case study 4: Real-time audio

* Drawbacks



Introduction

Want your simulator to attract as many neuro-researchers as possible.

Performance Flexibility
s it benefiting from: s it easy to define:
* Vectorization techniques * Non-standard models

* Pre-compiled models  Arbitrary protocols



Continued...

Brian 2 solves this trade-off.

» Flexibility: User-written Python script
* No limit on the experiment structure

» Performance: Code generation
e Transform high-level model into low-level executable code



Design Implementation

1. Non-standard models
 Mathematical equations should be explicitly written.

2. Complete computational experiment
* Models must interact with general control flow.

3. Efficient code generation
* Generated code can integrate into the simulation flow.

4. Extensibility of code
e Code can be extended either at high- or low-level.



Case Study 1: Pyloric Network

(a) (b) (c)
—@) Slow cholinergic initial adapted initial adapted

——@ Fast glutamatergic —25 = _UW
_50 = o

v (in mV)
th o
Vs (in mV)

I T 1 1 T
0 2 4 0 2 4

time (in s) time (in s)

Generate a stereotypical triphasic motor pattern.
(a) Circuit schematic

(b) Simulated neuron activity

(c) Simulated neuron activity (biologically detailed)



Continued...

i1 frem brian? import =
defaultelock.dr = 0.01sma;

Delta T = 17.5+mV : w T = mY ; tap = J¢ma i tau_sdapt = . J2+zecond
+ teu_Ca = 150%ma ; tau_x = Zszecond ;ow.r = -G8smY ; tAu_z = S*gacond
a = 1/Delta_Tes+3 : b = 3/Dalta_Te«2 g =1 Jenk i d = 2. 5enll/Dalta Tesd
C = Ghe#pF i 8 = Jend/Delta_T : G = 2B.5+n8
eqs = 'Y
# dvfdt = (Delts Tege(-as{v — v_Tl+=s3 + k(v - w_TIe=2) + w - x - I_fasr - I_glow)/C : wolt
o dufdt = (¢ - dely - v _Th**2 - w}/tau : emp
i dxfdt = (as(v - yv_r) - x)/teu_x : amp

i 8 = 5«(1 - vanh(z)) : slems
iz g = Gs{1l + vanh(z)}) : eieme
15 dCa/dt = -Caftan_Ca : 1

4 dzfdt = tanh(Ca - Ca_target

na

e

Jftau z : 1

8 dv/dt
9 dw/dt
10 dx/dt

Neuron model is written in differential equation.

(Delta_Txg*(-a*(v — v_T)**3 + bx(v - v_T)**2) + w - x - I_fast - I_slow)/C : volt
(c - d*x(v - v_T)*%2 - w)/tau : amp

(s*(v - v_r) - x)/tau_x : amp

I_fast : anmp
. I_slow : amp
Ca_target : 1 {constant}
i lebel : integer {(constant)

m ABFD, LP, PY =0, 1, 2

n  circuit = NeuronGroup{3, eqe, thresheld="v>-Z0+==aV',

£ method="rk2"}
2y cireuit.label = [ABPD, LF, PY]
u  circuit.v = v_r
cirenit.w = ‘-Senkerand()’'
% cirenit.z = ‘rand(}=0.2 - 0.1

refractory='v»-20

eirenit.Ca_target = [0.048, 0.03

= fast = 0.2/mV; ¥ _fast = -

B4,

0. 06]

S0sm¥; E_syn = -75smV

s reset='Ca += 0.1',

13  dCafdt = -Ca/tau_Ca : 1

Calcium trace decays.

¥

circuit = NeuronGroup(3, eqs, threshold='v>-20*mV', refractory='v>-20#*nV', reset='Ca += 0.1',
method="'rk2')

wio egs_fast = '°
" g fast
I_fast_post =

& fast_aynapses
fast_synapses.
w  fast_aynapses.

: slemens (conatant)

g fast={v_post - E_syn)/(l+exp(a_fast*(V_faet-v_pre})} : emp (summed)

= Synapses (circult, circuit, model=eqa_fast)

Calcium trace increases at each spike.

1 fast_synapses.g_fast['label

i fast_synapaes.g_fast['label pre
w feat_synepses.g fast['label pre
4 fast_synapses.g_fast['label pre

PY and label post == LP'] =0

a2 g_slow = 1/mV; V_slow = -B5=mV; k_1 = 1/me

4 ege_slow = '°
# k.2 : Lfsecond (conatant)
45 g.2low ! siemens (constant)

s I_slou_post = g_slowsm_slows{v_poat-E_syn) :

amp {Eummed)

41 dm_slowfdt = k_i*({i-m_glow) /(l+exp(a_slows(V_slow-v_pre))) - k_Z«m

s alew_synapses = Symnapses(cireuit,

si elow_synapses. connect{'label pre
51 slew_asyneapses.g _slow['label poat

slou_synapses . k_3['label pogt ==
2y glew_aynapses.g _slow['label poat
s+ slow_synapses.k_2['label post ==

s rum(59. S=zecond)

cirenit, model=egqa_glow, method=
= ABPD end label_poet != ABPD'}
= LP*'] = 0.025+ul

Lp!] = (3.03/m8

P

= PY'] = 0.015=u3
¥'1 = 0.008/ma

connect('label _pre != label post and not (label pre == PY and label poat == ABPD)'}
g fast['label pre == ABPD and label post == LP'] = 0.015+u3
pre == ABPD and label post == PY'] = 0.006+uS
== LPF pnd label post == AEPD'] = 0.01=uS
== P and label post == FY'] = {.02su3

105+uS

alow : 1 {clock-drivea)

eXact')

[
|

S#{1 - tanh(z)) : siemens
G*(1 + tanh(z)) : =ziemens

dz/dt = tanh(Ca - Ca_tarpget)/tau_ =z : 1

Conductances are regulated by trace difference.




Continued...

i1 frem brian? import =

3 defaultelock.dr = 0.01sma;

¥ Delta T = 17.5+mV : w T = -40=mV
+ teau_Ca = 150+msa ; tan_x = 2sgecond ;ow.r = -G8smY
: a= I/Delta_Ts+3 : b = 3/Dalta_Te«2 e =1.2¢mk
& O = G0+pF i 8 = 2end/Delta T ; G = 2B.5+n8
r eqa = ‘'t

# dvfdt = (Delts Tege(-as{v — v_Tl+=s3 + k(v - w_TIe=2) + w - x - I_fasr - I_glow)/C : wolt
o dufdt = (¢ - dely - v _Th**2 - w}/tau : emp

: tap = Zsms ; tan_adapt = .JZ+secend
+ tEu_z = S*gacond

¢ d = 2.54nh/Delta_Tes2

w dxfdr = (as(vy - yv_r) - x)/tau_x : amp
i & = Ss(1 - tanhiz)) : elemans
iz g = Gs({1l + tanh(z]) : siemens
i3 dfafdt = -Ca/ran_Ca : 1
# dz/dr = tanh(Ca - Ca_target)/ftau z : 1
5 1 _fast : amp
3 I_slow : amp
Ca_target : 1 {constant}
ik lebel : integer {conetant)

m ABFD, LP, PY = 0, 1, 2
n  ecircuit = NeuronGroup(3, eqe, threshold='v>-20+aV', refractory='v>-20+m¥', reset='Ca += 0.1',
n method="rk2')
3y gireuit.label = [ABPD, LF, PY]
u  circuit.v = v_r
13 cirenit.w = *-Senkerand ()"’
¥ circnit.z = ‘rand(}=0.2 - 0.1°
eirenie.Ca_target = [0.048, 0.0384, 0.08]

= fast = 0.2/mV; ¥ _fast = -50smV; E_syn = -T5emV

s0 egs_fapt = '°F

" g fast : siemens (conatant)

2 1 fast post = g _fast+{v_poat - E_syn)/(l+exp(a_fast+(V¥_fast-v_pre})}} : amp (summed)

4  fast _synapses = Synapses(circult, circuit, model=eqs fast)

= fast_synapses.connect(’label pra != label post and not (label pre == PY and label poat == AEPD)')
w fpat_synapees.g fast['label pre == ABPD and label post == LP'] = 0.015+us

i fast_synapses.g fast['label pre == ABPD and label post == PY'] = 0.005+u3

w fast _synapees.g _fast['label pre == LP and label post == HBPD'] = 0.01su3
w fast_synapses.g fast['label pre == LP and label post == P¥']l = 0.02sul
« fast_synapses.g _fast['label pre == PY and label post == LP'] = 0.005+uS
41

iz g_elow = 1/mV; V_alow = -65=m¥; k_1 = 1/me

4  egs _slow = '

# k.2 : Lfsecond (conatant)

4 g alow : siemens (constant)
s I_slow post = g _slowsm_slows{v_post-E_syn) : emp (summed)
a1 dm_slowfdt = k_1+{i-m_slow)/{l+exp(a_slows(V slow-v_pre))) - k_Zem slow : 1 {clock-driven)

s alev_synapses = Symapaes(eireuit, civenit, medel=eqa_elew, methed='exact')
sa  glow_synapses.connect{’'label pre == ABPD and label _poet != ABPD')
si  #low_aynapses.g _slow['label poat == LP'] = 0.025sul

5 nlau_g}’napses.k_?{'la.heL_pueL == [ pi] = (3.03/m8
s slev_synapses.g _slow['label poat == PY'] = 0.0L5+ul
s+ elow_synapaes.k_2[‘label_post == PY'] = 0.008/ma

s rum(59. S=zecond)

™ g_fast = 0.2/wV; V_fast = -50+*nV; E_syn = -T5*mV
w egs_fast = ''"'

u g _fast : siemens (constant)

12 I _fast_post = g_fast*(v_post - E_syn)/(i+exp(s_fast*(V_fast-v_pre))) : amp (summed)

33 LB

u fast_synapses = Synapses(circuit, circuit, model=eqs_fast)

Nonlinear (graded) fast synapse

4z s_slow = 1/mV; V_slow = -55+mV; k_ 1 = 1/ms
43  ags_slow = ''"!
# k. 2 : 1/second (constant)

g_slow : siemens (constant)

is

46 I_slow_post = g_slowsm_slow*(v_post-E_syn) : amp (summed)
n  dm_slow/dt = k_1*{1-m_slow)/(1+exp(s_slow*(V_slow-v_prel)) - k _2+m _=low :

P

w  slow_synapses = Synapses(circuit, circuit, model=eqs_slow, method='exact')

Nonlinear (graded) slow synapse

1 (clock-driven)




Continued...

i1 frem brian? import =

3  defanltelock.dr = 0.01sma:

¥ Delta T = 17.5+mV : w T = -40=mV

+ teau_Ca = 150+msa : tap_x = Zsgecond
: a= I/Delta_Ts+3 : b = 3/Dalta_Te«2
& © = &0+pF i 8 = 2end/Delta T
T aqa = 'Y

# dvfdt = (Delts Tege(-as{v — v_Tl+=s3 + k(v - w_TIe=2) + w - x - I_fasr - I_glow)/C : wolt
o dufdt = (¢ - dely - v _Th**2 - w}/tau : emp

: tap = Zsms
;ow.r = -G8smY
i e = 1.2+mk
: G = 2B.5+n8

; tan_adapt = .JZ+secend
; tAu_z = S*gacond
i d = 2. 5enll/Dalta Tesd

w dx/dt = (se{v - v_r) - x)/tau_x : amp
i & =5«(1 - vanh(z)) : elemsns
iz g = G=(1 + vanhi(z)) : siemen=s
i3 dfafdt = -Ca/ran_Ca : 1
#  dzfdt = tanh(Ca - Ca_target)frau z : 1
15 1 _fast : amp
o I_alow : amp
Ca_target : 1 {constant}
1 label : integer {conetant)

m ABFD, LP, PY =0, 1, 2

u  circuit = NeuremGroup(3, eqe, threshold='v>-Z0saV',
21 methad="rk2*})

3y gireuit.label = [ABPD, LF, PY]

1 cirenit.v = v_r

13 cirenit.w = *-Senkerand ()"’

¥ eirenit.z = ‘rand()=0.2 - 0.1'

eirenie.Ca_target = [0.048, 0.0384, 0.08]

refractory='v>-20+mV¥', reset='Ca += 0.1',

= fast = 0.2/mV; ¥ _fast = -50smV; E_syn = -T5emV
M eqe _fast = 0
" g fast : siemens (conatant)

2 1 fast post = g _fast+{v_poat - E_syn)/(l+exp(a_fast+(V¥_fast-v_pre})}} : amp (summed)

4  fast _synapses = Synapses(circult, circuit, model=eqs fast)
1= fast_synapses.connect(’'label pre != label post and not (label pre == PY and label poat == AEPD)')

w fpat_synapees.g fast['label pre == ABPD and label post == LP'] = 0.015+us
uw  fast_synapses.g fast['label pre == ABPD and label post == PY'] = 0.005+u3
1w fast_aynapses.g _fast['label pre == LP and label post == HBPD'] = 0.01=u3
w fast_synapses.g fast['label pre == LP and label post == FY']l = 0.02su3
« fest_synapses.g_fast['label pre == PY and label pest == LP'] = 0.005+uS

a2 g_slow = 1/mV; V_slow = -B5=mV; k_1 = 1/me
4  egs _slow = '

# k.2 : Lfsecond (conatant)

s g oalow
s I_slow post = g _slowsm_slows{v_post-E_syn) : emp (summed)

a1 dm_slowfdt = k_1+{i-m_elow) /{l+exp(a_slows{V_slow-v_pre))) - k_Zem slow :

siemens (constant)
1 {clock-driven)

s alev_synapses = Symapaes(eireuit, civenit, medel=eqa_elew, methed='exact')
sa  glow_synapses.connect{’'label pre == ABPD and label _poet != ABPD')

si  #low_aynapses.g _slow['label poat == LP'] = 0.025sul

5 nlau_g}’napsea.k_?['la.heL_puet == [ pi] = (3.03/m8

»  alow_synapsea.g_slow['label poat == PY'] = 0.015=uS

s+ elow_synapaes.k_2[‘label_post == PY'] = (. 008/ ms

s rum(59. S=zecond)

w fast_synapses.g_fast['label_pre == ABPD and label_post
w fast_synapses.g_fast['label_pre == ABPD and label_post
i fast_synapses.g_fast['label_pre == LP and label_post ==
w fast_synapzes.g_fast['label_pre == LP and label_post ==
w fast_synapses.g_fast['label_pre == PY and label_post ==
51 slow_synapses.g_slow['label_post == LP'] = 0.025+uS
52 slow_synapses.k_2['label_post == LP'] = 0.03/ms
53  slow_synapses.g_slow['label_post == PY'] = 0.015*uS§
s+ slow_synapses.k_2['label_post == PY'] = 0.008/ms

Set up initial values.

0.015*uS
0.005*uS
0.01*u8
0.02#u3
0.005*uS

—4& Slow cholinergic
——e Fast glutamatergic

5

15 fast_synapses.connect('label _pre

;0 slow_synapses.connect('label_pre == ABPD and label_post

Connectivity pattern

AEBFD')

!= label_post and not (label_pre == PY and label_post

== ABFD) ')




Continued...

Comparison to other approaches

»Implement in a language like C++7?

* Requires significant technical skill
= Justified if iteration is done thousands of times

 Difficult to adapt for other purposes

» Use description language such as LEMS / NeuroML2?

* Like Brian2, but somewhat more verbose

»Use NMODL language in NEURON simulator?

* Requires learning new language

»Use NESTML language in NEST simulator?

* Doesn’t support graded synapse

[define non-standard models]



Case Study 2: Ocular Model

(a) (b)
xeye xubject
space O
b >
. ]
ll -G
% £
. =
o
a
| e
ocular muscles
right =

motor neurons

l l == I
1
(TR Wl 1 [

retina

lf left

2 4 6 8 10
time (s)

Two antagonistic muscles are modelled mechanically as elastic spring with friction.

(a) Circuit schematic

(b) Simulated activity of sensory neurons (black) & motor neurons (blue, orange)



Continued...

1 from brian2 import *

alpha = (1/(50+ms))#*+2; beta = 1/(50+ms); tam_muscle = 20+ms; tau_object = 500+ms
+ eqs_eye = '''dx/dt = velocity : 1
s dvelecity/dt = alpha*(x0-x)-betasvelocity : 1/second
3 dx0/dt = -x0/tau_muscle : 1
dx_object/dt = (noise - x_object)/tau_object: 1
] dnoise/dt = -noise/tau_object + tau_object##*-0.5#xi : 1'''

v eye = NeuronGroup(1l, model=eqs_eye, method='euler')

1" taum = 20+ms

12 motoneurcns = NeuronGroup(2, model='dv/dt = -v/taum : 1', threshold='v>1', reset='v=0',
13 refractory=5+*ms, method='exact' )

s motosynapses = Synapses(motoneurons, eye, model='w : 1', on_pre='x0_post += w')
16 motosynapses.connect() # connects all motoneurons to the eye

i7 motosymapses.w = [-0.5, 0.5]

w N = 20; width = 2./N; gain = 4.

m eqs_retina = '''dv/dt = (I-(14gs)+v)/taum : 1
11 I = gainwexp(-((x_object-x_eye-x_neuron)/width)*s2) : 1
22 x_neuron : 1 (constant)

2 x_object : 1 (linked) # position of the object
u ®x_eye : 1 (linked) # position of the eye
25 gs : 1 # total synaptic conductance"''

% retina = NeuronGroup(N, model=eqs_retina, threshold='v>1', reset='v=0', method='exact')
retina.v = 'rand()'

% retina.x_eye = linked_var(eye, 'x')

» retina.x_object = linked_var (eye, 'x_object')

s, retima.x _neuron = '-1.0 + 2.0%i/(N-1)'

32 sensorimotor_synapses = Synapsﬁs{ratina. motoneurons, model='w : 1 (comstant)',

n on_pre='v_post += w')

W sensorimotor_synapses.connect(j='int(x_neuron_pre > 0)')
38 # Strength scales with eccentricity:

% sensorimotor_synapses.w = '20%*abs(x_neuron_pre)/N_pre'

s run(l0*second)

i+ eqs_eye =
5 dvelocity/dt
é dx0/dt =

ttidy/dt = velocity : 1

= alpha#*(x0-x)-beta*velocity : 1/second

-x0/tau_muscle : 1

Position of eye follows 2"%-order differential equation.

7 dx_object/dt
B dnoise/dt =

= (noise - x_object)/tau_object: 1
-noise/tau_object + tan_object*+-0.5%xi : 1'"'

Stimulus moves in a stochastic process.

1 taum = 20+ms

12 motoneurons = NeuronGroup(2, model='dv/dt =

-y /taum 1', threshold='v>1"',

refractory=5+ms, method='exact')

Muscles are controlled by two motoneurons.

reset="v=0",

12




Continued...

1 from brian2 import =

s alpha = (1/(50+ms))*+2; beta = 1/(50+#ms); tam muscle = 20+ms; tan_object = 500+ms
+ eqs_eye = '''dx/dt = velocity : 1

[ dvelecity/dt = alpha*(x0-x)-betasvelocity : 1/second
3 dx0/dt = -x0/tau_muscle : 1
dx_object/dt = (noise - x_object)/tau_object: 1
] dnoise/dt = -noise/tau_object + tau_object#*#-0.5#%xi : 1''" } i
v eye = NeuronGroup(1l, model=eqs_eye, method='euler') - eqs_retlna = d"r"rldt = (I—f_l"'gﬂ-} *v},-"'t.aum : 1
1o 1 I = gainkexp(-((x_object-x_eye-x_neuron)/width)#**2) : 1

1 taum = 20*ms

™ oo ol o ek Retinal neurons receive visual input.

s motosynapses = Synapses(motoneurons, eye, model='w : 1', on_pre='x0_post += w')
16 motosynapses.connect() # connects all motoneurons to the eye

17 motesynapses.w = [-0.5, 0.5]

9 N = 20; width = 2./N; gain = 4.
m eqs_retina = "''dv/dt = (I-(14gs)*v)/taum : 1
1 I = gainsexp(-((x_object-x_eye-x_neuron)/width)#s2) : 1

2 x_neuron : 1 (constant)

2 x_object : 1 (linked) # position of the object

u x_eye : 1 (linked) # position of the eye

25 gs : 1 # total synaptic conductance'''

% retina = NeuronGroup(N, model=eqs_retina, threshold='v>1', reset='v=0', method='exact') 32 senggrimgtor_aynapseﬁ x S}rnapses{retina, motoneurons, model='w : 1 (constant)' :
1 retima.v = 'rand()'

- 1 - !
® retina.x_eye = linked_var(eye, 'x') 33 on_pre='v_post += W b}

» retina.x_object = linked_var (eye, 'x_object')

o xetina.xneuron = '~1.0 + 2.00/(4-1)" Retinal neurons project on motoneuron to control muscle.

32 sensorimotor_synapses = Synapses(ratina, motoneurons, model='w : 1 (comstant)',

1 on_pre='v_post += w')
% sensorimotor_synapses.connect(j='int(x_neuron_pre > 0)')
% # Strength scales with eccentricity:

% sensorimotor_synapses.w = '20%*abs(x_neuron_pre)/N_pre'

s run(l0*second)

13



Continued...

Comparison to other approaches

» Use language such as LEMS / NeuroML2 / NMODL?
e Same as “Case Study 1”

»Use NESTML language in NEST simulator?

* Doesn’t support continuous interaction between single environment &
multiple neurons

[define dynamics of stimulus]



Case Study 3: Threshold Finding

(a) (b)
40 -+
step = 25mV run with neuron
vy = 25mV v =1y spiked? 54 % .__,..-o-'—"—i—.—i
S
= o ®—e—9p—n—0—a—sn
£ / Ne—0—e—0—s—s—s—s
decrease increase 9 0+ ; ) | | i : T
©
vy by step v by step € 0 2 4 6 8 10
\ / pr iteration
Lo}
Replace step % 40
o by step/2 'E,
7 L 20 -
c
4=

10 iterations
stop - 3
yes performed? ' ' ' ' '
20 40 60 80 100

gNA (mS/cm?)

Determine the voltage firing threshold of a neuron.
(a) Flowchart of bisection algorithm
(b) Refinement of threshold over iterations (three different Na densities)

15



Continued...

w v0 = 25*xmV+*ones(len(neurons))

it from brian2 import * 31 St'ﬂp = EE*E‘J

defaultclock.dt = 0.01i*ms

[ s cxomns e rismns = iz Set initial estimate and step width.

s gl = 0.3"m8/cm**2; gK = 36*mS/cme+2; C = 1»uF/cmes2

o gNa_min = 15+mS/cm++2; gNa_max = 100+mS/cm*+2

¢ eqs = "''dv/dt = (gl+*(El - v) + gNa*m*+3+h*(ENa - v) + gH*n**4+(EK - v)) / C : volt step = 25mV run with neuron
9 gha : siemens/meters+2 = %
10 dm/dt = alpham*(l - m) - betamsm ; 1 by = 2mv v="t mtiedt

i dn/dt = alphan#(1 - n) - batan*n : 1

12 dh/dt = alphah*(1 - h) - batahsh : 1

1 alpham = (0.1/mV}=(=v + 25+mV)/(exp((-v + 25+*mV)/(10*mV}) = 1)/ms : Hz decrease Increase
14 betam = 4 * exp(-v/(18+nV))/ms : Hz uy by step vy by step
14 alphah = 0.07 = exp(-v/(20%mV))/ms : Hz

1 betah = 1/(exp((-v+30=mV) / (10+mV)) + 1)/ms : H=z \ /

" alphan = (0.01/mV) = (-v410smV) / (exp((-v+10#mV) / (10#mV)) - 1)/ms : Hz Replace step

I® betan = 0.126+exp(-v/(80*mV))/ms : Hz'"'

w neurcns = NeuronGroup(100, eqs, threshold='v > 50+mV', method='exponential euler') no by step/2

x neurons.gNa = 'gNa_min + (gNa_max - gNa_min)=1.0=i/N' /

2l neurons.v = O+mV

10 iterations

neurons.m = '1/(1 + betam/alpham)’ stop
»n neuroms.m = '1/(1 + betan/alphan)' yes performed?
24 mneurons.h = '1/(1 + betah/alphah)’
3 8§ = SpikeMoniter(neurcns)
o swesel 33 for i in range(10):
: :O;‘-:‘ ;;::;fo;:;(ie;h}eu;ons.n H res-bore(]
11 step = 25+mV
» 35 neurons.v = v0
n for i in range(10):
w  mestors() 3 run (20*ms)
35 neurons.v = vl
“ run(20+ms) 37 vO[S.count == 0] += step
5 vO[S.count == 0] += step
e vO[S.cnu.ntA?’ 0] -= step 38 vﬂ [S i CD]JIlt } D] —— Step
£ step /= 2.0
39 step /= 2.0
Perform the bisection for a certain #iteration.




Continued...

Comparison to other approaches

» Use language such as LEMS / NeuroML2?
* Can only specify duration and step size

»Use NEST simulator?
* Like Brian2; use SLI or Python

»Use NEURON simulator?
* Like Brian2; use HOC or Python

[define arbitrary protocols]



Case Study 4: Real-time Audio

Spectrogram of sound signal

4x10? 1
< 3x%10?
z
> 2x10?
[
c
@
5 :
Y o 10°
s
delay & delay & delay & delay é 6 x 101
. Spiking activity
Raw sound signal

“’MW

| AN
III Ill “I““l.
mﬂt J '| o “"T:Wn n-mmnliu ”y

0.5 1.0 15 2.0 2.5 3.0 35 4.0

amplitude
Preferred
Frequency (Hz)
[ Y] (W1 =
x x
& b o

Detect the pitch based on autocorrelation of a signal.

18



Continued...

t  from brian2 import #
import os
set_device('cpp_standalone')

sample_rate = 48+kHz; buffer_size = 128; defaultclock.dt = 1/sample_rate
max_delay = 20+ms; tau_ear = l¥ms; tau_th = S+ms
50*Hz; max_freq = 1000*Hz; num_neurons = 300; tau = l*ms; sigma =

SAMPLE_RATE, BUFFER_SIZE, NULL, NULL) TWO mOdES:
(1) Runtime mode:
* Python controls overall simulation.
I 1 * It calls compiled code objects to do heavy lifting.
€ o, e * Overhead: Repeated switching from Python to another language

Pa_ReadStream(stream, buffer, BUFFER_SIZE);

T = Justified if flexibility is preferred

¥
return buffer[next_sample++];
}''*, libraries=['portaudio’], headers=['<portaudio.h>‘],
0 define_macros=[('BUFFER_SIZE', buffer_size),

. ('SAMPLE_RATE', sample_rate)]) (2) Standalone mode:

icheck_units(t=second, result=1)
def get_sample(t):

raige NotImplementedError('Use a C++-based code generation target.') i LOW_IeveI COde iS generated .

. .
eqs_ear = ''‘dx/dt = (sound - x)/tau_ear: 1 (unless refractory) L It Controls overa” Slmulatlon-
dc = (0.1%x - th)/tau_th : 1
sound = clip(get_sample(t), 0, inf) : 1 (constant over dt)''' Abl t t d f t t I tf (GPU)
receptors = NeuronGroup(!l, eqs_ear, threshold='x>th', ° e O genera e Co e Or arge p a orm
40 reset='x=0; th = th*2.5 + 0.01"',
4l refractory=2+ms, method='exact')
42 receptors.th =1
"
: eqs_neurons = ''‘dv/dt = -v/t igma*(2./tau)*s* . S*xi : 1
45 freq : Hz (c ant) ‘"'
" neurons = NeuronGroup(num_neurons, eqs_neurons, threshold='v>1',6 reset='v=0',k method='euler')
neurons.freq = 'exp(log(min_freq/Hz)+(i*1.0/{num_neurons-1))*log(max_freq/min_freq))+Hz'
i
# synapses = Synapses(receptors, neurons, on_pre='v += (.5', multisynaptic_index='k')
il synapses.connect(n=2) # one synapse without deloy t
st synapses.delay['k == 1'] = '1/freq_post 19

run(10#*second)



Continued...

Comparison to other approaches

» Use language such as LEMS / NeuroML2?
* Not possible

> Use NEST simulator?

» Utilize MUSIC framework to couple multiple simulators
e Cannot apply continuous-valued inputs

»Use NEURON simulator?

* Can include user-written C code
* No documented mechanism to link external libraries

[define interface with other language]



Drawbacks

1. Explicit model definitions

* Difficult to design tools to programmatically inspect a model
= Rebuttal: Reduce risk of difference between implementation & description

2. Tightly integrated simulation flow

 Difficult to reuse or programmatically compare a model
= Rebuttal: Reduce complexity & chance of errors

3. No scaling up

* Lack of support for running large networks over multiple machines
= Rebuttal: Most people use smaller networks for parameter exploration.

21



Continued...

4. Rudimentary multi-compartmental models
* Not as mature as NEURON or GENESIS simulator

5. Automated optimization techniques
* Generate optimization for specialization of models

execution time / biological time

=== NEST (12 threads)
NEURON
== Brian 1

homogeneous population

102 5
7 S
101 // _
A /
// ”
10° 4 /'/ A 7.
-‘—./‘ / = .7’-
] -—"=';ﬂ:"""'"-
-—-—-. - -/
I =l
1071 ~
T 10 10

Number of neurons

=== Brian 2: runtime
—+=Brian 2: standalone (single thread)

Brian 2: standalone (12 threads)

heterogeneous population

) T
. /?/.
27
o 2 7
e e
10 16 0

Number of neurons

CUBA benchmark




Questions?
Comments?
Concerns?



