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Overview

* Introduction

* Design implementation

e Case study 1: Pyloric network

e Case study 2: Ocular model

e Case study 3: Threshold finding
* Case study 4: Real-time audio

* Drawbacks



Introduction

Want your simulator to attract as many neuro-researchers as possible.

Performance Flexibility
s it benefiting from: s it easy to define:
* Vectorization techniques * Non-standard models

* Pre-compiled models  Arbitrary protocols



Continued...

Brian 2 solves this trade-off.

» Flexibility: User-written Python script
* No limit on the experiment structure

» Performance: Code generation
e Transform high-level model into low-level executable code



Design Implementation

1. Non-standard models
 Mathematical equations should be explicitly written.

2. Complete computational experiment
* Models must interact with general control flow.

3. Efficient code generation
* Generated code can integrate into the simulation flow.

4. Extensibility of code
e Code can be extended either at high- or low-level.



Case Study 1: Pyloric Network

(a) (b) (c)
—@) Slow cholinergic initial adapted initial adapted

——@ Fast glutamatergic —25 = _UW
_50 = o

v (in mV)
th o
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Generate a stereotypical triphasic motor pattern.
(a) Circuit schematic

(b) Simulated neuron activity

(c) Simulated neuron activity (biologically detailed)
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i1 frem brian? import =
defaultelock.dr = 0.01sma;

Delta T = 17.5+mV : w T = mY ; tap = J¢ma i tau_sdapt = . J2+zecond
+ teu_Ca = 150%ma ; tau_x = Zszecond ;ow.r = -G8smY ; tAu_z = S*gacond
a = 1/Delta_Tes+3 : b = 3/Dalta_Te«2 g =1 Jenk i d = 2. 5enll/Dalta Tesd
C = Ghe#pF i 8 = Jend/Delta_T : G = 2B.5+n8
eqs = 'Y
# dvfdt = (Delts Tege(-as{v — v_Tl+=s3 + k(v - w_TIe=2) + w - x - I_fasr - I_glow)/C : wolt
o dufdt = (¢ - dely - v _Th**2 - w}/tau : emp
i dxfdt = (as(v - yv_r) - x)/teu_x : amp

i 8 = 5«(1 - vanh(z)) : slems
iz g = Gs{1l + vanh(z)}) : eieme
15 dCa/dt = -Caftan_Ca : 1

4 dzfdt = tanh(Ca - Ca_target

na

e

Jftau z : 1

8 dv/dt
9 dw/dt
10 dx/dt

Neuron model is written in differential equation.

(Delta_Txg*(-a*(v — v_T)**3 + bx(v - v_T)**2) + w - x - I_fast - I_slow)/C : volt
(c - d*x(v - v_T)*%2 - w)/tau : amp

(s*(v - v_r) - x)/tau_x : amp

I_fast : anmp
. I_slow : amp
Ca_target : 1 {constant}
i lebel : integer {(constant)

m ABFD, LP, PY =0, 1, 2

n  circuit = NeuronGroup{3, eqe, thresheld="v>-Z0+==aV',

£ method="rk2"}
2y cireuit.label = [ABPD, LF, PY]
u  circuit.v = v_r
cirenit.w = ‘-Senkerand()’'
% cirenit.z = ‘rand(}=0.2 - 0.1

refractory='v»-20

eirenit.Ca_target = [0.048, 0.03

= fast = 0.2/mV; ¥ _fast = -

B4,

0. 06]

S0sm¥; E_syn = -75smV

s reset='Ca += 0.1',

13  dCafdt = -Ca/tau_Ca : 1

Calcium trace decays.

¥

circuit = NeuronGroup(3, eqs, threshold='v>-20*mV', refractory='v>-20#*nV', reset='Ca += 0.1',
method="'rk2')

wio egs_fast = '°
" g fast
I_fast_post =

& fast_aynapses
fast_synapses.
w  fast_aynapses.

: slemens (conatant)

g fast={v_post - E_syn)/(l+exp(a_fast*(V_faet-v_pre})} : emp (summed)

= Synapses (circult, circuit, model=eqa_fast)

Calcium trace increases at each spike.

1 fast_synapses.g_fast['label

i fast_synapaes.g_fast['label pre
w feat_synepses.g fast['label pre
4 fast_synapses.g_fast['label pre

PY and label post == LP'] =0

a2 g_slow = 1/mV; V_slow = -B5=mV; k_1 = 1/me

4 ege_slow = '°
# k.2 : Lfsecond (conatant)
45 g.2low ! siemens (constant)

s I_slou_post = g_slowsm_slows{v_poat-E_syn) :

amp {Eummed)

41 dm_slowfdt = k_i*({i-m_glow) /(l+exp(a_slows(V_slow-v_pre))) - k_Z«m

s alew_synapses = Symnapses(cireuit,

si elow_synapses. connect{'label pre
51 slew_asyneapses.g _slow['label poat

slou_synapses . k_3['label pogt ==
2y glew_aynapses.g _slow['label poat
s+ slow_synapses.k_2['label post ==

s rum(59. S=zecond)

cirenit, model=egqa_glow, method=
= ABPD end label_poet != ABPD'}
= LP*'] = 0.025+ul

Lp!] = (3.03/m8

P

= PY'] = 0.015=u3
¥'1 = 0.008/ma

connect('label _pre != label post and not (label pre == PY and label poat == ABPD)'}
g fast['label pre == ABPD and label post == LP'] = 0.015+u3
pre == ABPD and label post == PY'] = 0.006+uS
== LPF pnd label post == AEPD'] = 0.01=uS
== P and label post == FY'] = {.02su3

105+uS

alow : 1 {clock-drivea)

eXact')

[
|

S#{1 - tanh(z)) : siemens
G*(1 + tanh(z)) : =ziemens

dz/dt = tanh(Ca - Ca_tarpget)/tau_ =z : 1

Conductances are regulated by trace difference.
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i1 frem brian? import =

3 defaultelock.dr = 0.01sma;

¥ Delta T = 17.5+mV : w T = -40=mV
+ teau_Ca = 150+msa ; tan_x = 2sgecond ;ow.r = -G8smY
: a= I/Delta_Ts+3 : b = 3/Dalta_Te«2 e =1.2¢mk
& O = G0+pF i 8 = 2end/Delta T ; G = 2B.5+n8
r eqa = ‘'t

# dvfdt = (Delts Tege(-as{v — v_Tl+=s3 + k(v - w_TIe=2) + w - x - I_fasr - I_glow)/C : wolt
o dufdt = (¢ - dely - v _Th**2 - w}/tau : emp

: tap = Zsms ; tan_adapt = .JZ+secend
+ tEu_z = S*gacond

¢ d = 2.54nh/Delta_Tes2

w dxfdr = (as(vy - yv_r) - x)/tau_x : amp
i & = Ss(1 - tanhiz)) : elemans
iz g = Gs({1l + tanh(z]) : siemens
i3 dfafdt = -Ca/ran_Ca : 1
# dz/dr = tanh(Ca - Ca_target)/ftau z : 1
5 1 _fast : amp
3 I_slow : amp
Ca_target : 1 {constant}
ik lebel : integer {conetant)

m ABFD, LP, PY = 0, 1, 2
n  ecircuit = NeuronGroup(3, eqe, threshold='v>-20+aV', refractory='v>-20+m¥', reset='Ca += 0.1',
n method="rk2')
3y gireuit.label = [ABPD, LF, PY]
u  circuit.v = v_r
13 cirenit.w = *-Senkerand ()"’
¥ circnit.z = ‘rand(}=0.2 - 0.1°
eirenie.Ca_target = [0.048, 0.0384, 0.08]

= fast = 0.2/mV; ¥ _fast = -50smV; E_syn = -T5emV

s0 egs_fapt = '°F

" g fast : siemens (conatant)

2 1 fast post = g _fast+{v_poat - E_syn)/(l+exp(a_fast+(V¥_fast-v_pre})}} : amp (summed)

4  fast _synapses = Synapses(circult, circuit, model=eqs fast)

= fast_synapses.connect(’label pra != label post and not (label pre == PY and label poat == AEPD)')
w fpat_synapees.g fast['label pre == ABPD and label post == LP'] = 0.015+us

i fast_synapses.g fast['label pre == ABPD and label post == PY'] = 0.005+u3

w fast _synapees.g _fast['label pre == LP and label post == HBPD'] = 0.01su3
w fast_synapses.g fast['label pre == LP and label post == P¥']l = 0.02sul
« fast_synapses.g _fast['label pre == PY and label post == LP'] = 0.005+uS
41

iz g_elow = 1/mV; V_alow = -65=m¥; k_1 = 1/me

4  egs _slow = '

# k.2 : Lfsecond (conatant)

4 g alow : siemens (constant)
s I_slow post = g _slowsm_slows{v_post-E_syn) : emp (summed)
a1 dm_slowfdt = k_1+{i-m_slow)/{l+exp(a_slows(V slow-v_pre))) - k_Zem slow : 1 {clock-driven)

s alev_synapses = Symapaes(eireuit, civenit, medel=eqa_elew, methed='exact')
sa  glow_synapses.connect{’'label pre == ABPD and label _poet != ABPD')
si  #low_aynapses.g _slow['label poat == LP'] = 0.025sul

5 nlau_g}’napses.k_?{'la.heL_pueL == [ pi] = (3.03/m8
s slev_synapses.g _slow['label poat == PY'] = 0.0L5+ul
s+ elow_synapaes.k_2[‘label_post == PY'] = 0.008/ma

s rum(59. S=zecond)

™ g_fast = 0.2/wV; V_fast = -50+*nV; E_syn = -T5*mV
w egs_fast = ''"'

u g _fast : siemens (constant)

12 I _fast_post = g_fast*(v_post - E_syn)/(i+exp(s_fast*(V_fast-v_pre))) : amp (summed)

33 LB

u fast_synapses = Synapses(circuit, circuit, model=eqs_fast)

Nonlinear (graded) fast synapse

4z s_slow = 1/mV; V_slow = -55+mV; k_ 1 = 1/ms
43  ags_slow = ''"!
# k. 2 : 1/second (constant)

g_slow : siemens (constant)

is

46 I_slow_post = g_slowsm_slow*(v_post-E_syn) : amp (summed)
n  dm_slow/dt = k_1*{1-m_slow)/(1+exp(s_slow*(V_slow-v_prel)) - k _2+m _=low :

P

w  slow_synapses = Synapses(circuit, circuit, model=eqs_slow, method='exact')

Nonlinear (graded) slow synapse

1 (clock-driven)
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i1 frem brian? import =

3  defanltelock.dr = 0.01sma:

¥ Delta T = 17.5+mV : w T = -40=mV

+ teau_Ca = 150+msa : tap_x = Zsgecond
: a= I/Delta_Ts+3 : b = 3/Dalta_Te«2
& © = &0+pF i 8 = 2end/Delta T
T aqa = 'Y

# dvfdt = (Delts Tege(-as{v — v_Tl+=s3 + k(v - w_TIe=2) + w - x - I_fasr - I_glow)/C : wolt
o dufdt = (¢ - dely - v _Th**2 - w}/tau : emp

: tap = Zsms
;ow.r = -G8smY
i e = 1.2+mk
: G = 2B.5+n8

; tan_adapt = .JZ+secend
; tAu_z = S*gacond
i d = 2. 5enll/Dalta Tesd

w dx/dt = (se{v - v_r) - x)/tau_x : amp
i & =5«(1 - vanh(z)) : elemsns
iz g = G=(1 + vanhi(z)) : siemen=s
i3 dfafdt = -Ca/ran_Ca : 1
#  dzfdt = tanh(Ca - Ca_target)frau z : 1
15 1 _fast : amp
o I_alow : amp
Ca_target : 1 {constant}
1 label : integer {conetant)

m ABFD, LP, PY =0, 1, 2

u  circuit = NeuremGroup(3, eqe, threshold='v>-Z0saV',
21 methad="rk2*})

3y gireuit.label = [ABPD, LF, PY]

1 cirenit.v = v_r

13 cirenit.w = *-Senkerand ()"’

¥ eirenit.z = ‘rand()=0.2 - 0.1'

eirenie.Ca_target = [0.048, 0.0384, 0.08]

refractory='v>-20+mV¥', reset='Ca += 0.1',

= fast = 0.2/mV; ¥ _fast = -50smV; E_syn = -T5emV
M eqe _fast = 0
" g fast : siemens (conatant)

2 1 fast post = g _fast+{v_poat - E_syn)/(l+exp(a_fast+(V¥_fast-v_pre})}} : amp (summed)

4  fast _synapses = Synapses(circult, circuit, model=eqs fast)
1= fast_synapses.connect(’'label pre != label post and not (label pre == PY and label poat == AEPD)')

w fpat_synapees.g fast['label pre == ABPD and label post == LP'] = 0.015+us
uw  fast_synapses.g fast['label pre == ABPD and label post == PY'] = 0.005+u3
1w fast_aynapses.g _fast['label pre == LP and label post == HBPD'] = 0.01=u3
w fast_synapses.g fast['label pre == LP and label post == FY']l = 0.02su3
« fest_synapses.g_fast['label pre == PY and label pest == LP'] = 0.005+uS

a2 g_slow = 1/mV; V_slow = -B5=mV; k_1 = 1/me
4  egs _slow = '

# k.2 : Lfsecond (conatant)

s g oalow
s I_slow post = g _slowsm_slows{v_post-E_syn) : emp (summed)

a1 dm_slowfdt = k_1+{i-m_elow) /{l+exp(a_slows{V_slow-v_pre))) - k_Zem slow :

siemens (constant)
1 {clock-driven)

s alev_synapses = Symapaes(eireuit, civenit, medel=eqa_elew, methed='exact')
sa  glow_synapses.connect{’'label pre == ABPD and label _poet != ABPD')

si  #low_aynapses.g _slow['label poat == LP'] = 0.025sul

5 nlau_g}’napsea.k_?['la.heL_puet == [ pi] = (3.03/m8

»  alow_synapsea.g_slow['label poat == PY'] = 0.015=uS

s+ elow_synapaes.k_2[‘label_post == PY'] = (. 008/ ms

s rum(59. S=zecond)

w fast_synapses.g_fast['label_pre == ABPD and label_post
w fast_synapses.g_fast['label_pre == ABPD and label_post
i fast_synapses.g_fast['label_pre == LP and label_post ==
w fast_synapzes.g_fast['label_pre == LP and label_post ==
w fast_synapses.g_fast['label_pre == PY and label_post ==
51 slow_synapses.g_slow['label_post == LP'] = 0.025+uS
52 slow_synapses.k_2['label_post == LP'] = 0.03/ms
53  slow_synapses.g_slow['label_post == PY'] = 0.015*uS§
s+ slow_synapses.k_2['label_post == PY'] = 0.008/ms

Set up initial values.

0.015*uS
0.005*uS
0.01*u8
0.02#u3
0.005*uS

—4& Slow cholinergic
——e Fast glutamatergic

5

15 fast_synapses.connect('label _pre

;0 slow_synapses.connect('label_pre == ABPD and label_post

Connectivity pattern

AEBFD')

!= label_post and not (label_pre == PY and label_post

== ABFD) ')
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Comparison to other approaches

»Implement in a language like C++7?

* Requires significant technical skill
= Justified if iteration is done thousands of times

 Difficult to adapt for other purposes

» Use description language such as LEMS / NeuroML2?

* Like Brian2, but somewhat more verbose

»Use NMODL language in NEURON simulator?

* Requires learning new language

»Use NESTML language in NEST simulator?

* Doesn’t support graded synapse

[define non-standard models]



Case Study 2: Ocular Model

(a) (b)
xeye xubject
space O
b >
. ]
ll -G
% £
. =
o
a
| e
ocular muscles
right =

motor neurons

l l == I
1
(TR Wl 1 [

retina

lf left

2 4 6 8 10
time (s)

Two antagonistic muscles are modelled mechanically as elastic spring with friction.

(a) Circuit schematic

(b) Simulated activity of sensory neurons (black) & motor neurons (blue, orange)
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1 from brian2 import *

alpha = (1/(50+ms))#*+2; beta = 1/(50+ms); tam_muscle = 20+ms; tau_object = 500+ms
+ eqs_eye = '''dx/dt = velocity : 1
s dvelecity/dt = alpha*(x0-x)-betasvelocity : 1/second
3 dx0/dt = -x0/tau_muscle : 1
dx_object/dt = (noise - x_object)/tau_object: 1
] dnoise/dt = -noise/tau_object + tau_object##*-0.5#xi : 1'''

v eye = NeuronGroup(1l, model=eqs_eye, method='euler')

1" taum = 20+ms

12 motoneurcns = NeuronGroup(2, model='dv/dt = -v/taum : 1', threshold='v>1', reset='v=0',
13 refractory=5+*ms, method='exact' )

s motosynapses = Synapses(motoneurons, eye, model='w : 1', on_pre='x0_post += w')
16 motosynapses.connect() # connects all motoneurons to the eye

i7 motosymapses.w = [-0.5, 0.5]

w N = 20; width = 2./N; gain = 4.

m eqs_retina = '''dv/dt = (I-(14gs)+v)/taum : 1
11 I = gainwexp(-((x_object-x_eye-x_neuron)/width)*s2) : 1
22 x_neuron : 1 (constant)

2 x_object : 1 (linked) # position of the object
u ®x_eye : 1 (linked) # position of the eye
25 gs : 1 # total synaptic conductance"''

% retina = NeuronGroup(N, model=eqs_retina, threshold='v>1', reset='v=0', method='exact')
retina.v = 'rand()'

% retina.x_eye = linked_var(eye, 'x')

» retina.x_object = linked_var (eye, 'x_object')

s, retima.x _neuron = '-1.0 + 2.0%i/(N-1)'

32 sensorimotor_synapses = Synapsﬁs{ratina. motoneurons, model='w : 1 (comstant)',

n on_pre='v_post += w')

W sensorimotor_synapses.connect(j='int(x_neuron_pre > 0)')
38 # Strength scales with eccentricity:

% sensorimotor_synapses.w = '20%*abs(x_neuron_pre)/N_pre'

s run(l0*second)

i+ eqs_eye =
5 dvelocity/dt
é dx0/dt =

ttidy/dt = velocity : 1

= alpha#*(x0-x)-beta*velocity : 1/second

-x0/tau_muscle : 1

Position of eye follows 2"%-order differential equation.

7 dx_object/dt
B dnoise/dt =

= (noise - x_object)/tau_object: 1
-noise/tau_object + tan_object*+-0.5%xi : 1'"'

Stimulus moves in a stochastic process.

1 taum = 20+ms

12 motoneurons = NeuronGroup(2, model='dv/dt =

-y /taum 1', threshold='v>1"',

refractory=5+ms, method='exact')

Muscles are controlled by two motoneurons.

reset="v=0",

12




Continued...

1 from brian2 import =

s alpha = (1/(50+ms))*+2; beta = 1/(50+#ms); tam muscle = 20+ms; tan_object = 500+ms
+ eqs_eye = '''dx/dt = velocity : 1

[ dvelecity/dt = alpha*(x0-x)-betasvelocity : 1/second
3 dx0/dt = -x0/tau_muscle : 1
dx_object/dt = (noise - x_object)/tau_object: 1
] dnoise/dt = -noise/tau_object + tau_object#*#-0.5#%xi : 1''" } i
v eye = NeuronGroup(1l, model=eqs_eye, method='euler') - eqs_retlna = d"r"rldt = (I—f_l"'gﬂ-} *v},-"'t.aum : 1
1o 1 I = gainkexp(-((x_object-x_eye-x_neuron)/width)#**2) : 1

1 taum = 20*ms

™ oo ol o ek Retinal neurons receive visual input.

s motosynapses = Synapses(motoneurons, eye, model='w : 1', on_pre='x0_post += w')
16 motosynapses.connect() # connects all motoneurons to the eye

17 motesynapses.w = [-0.5, 0.5]

9 N = 20; width = 2./N; gain = 4.
m eqs_retina = "''dv/dt = (I-(14gs)*v)/taum : 1
1 I = gainsexp(-((x_object-x_eye-x_neuron)/width)#s2) : 1

2 x_neuron : 1 (constant)

2 x_object : 1 (linked) # position of the object

u x_eye : 1 (linked) # position of the eye

25 gs : 1 # total synaptic conductance'''

% retina = NeuronGroup(N, model=eqs_retina, threshold='v>1', reset='v=0', method='exact') 32 senggrimgtor_aynapseﬁ x S}rnapses{retina, motoneurons, model='w : 1 (constant)' :
1 retima.v = 'rand()'

- 1 - !
® retina.x_eye = linked_var(eye, 'x') 33 on_pre='v_post += W b}

» retina.x_object = linked_var (eye, 'x_object')

o xetina.xneuron = '~1.0 + 2.00/(4-1)" Retinal neurons project on motoneuron to control muscle.

32 sensorimotor_synapses = Synapses(ratina, motoneurons, model='w : 1 (comstant)',

1 on_pre='v_post += w')
% sensorimotor_synapses.connect(j='int(x_neuron_pre > 0)')
% # Strength scales with eccentricity:

% sensorimotor_synapses.w = '20%*abs(x_neuron_pre)/N_pre'

s run(l0*second)

13



Continued...

Comparison to other approaches

» Use language such as LEMS / NeuroML2 / NMODL?
e Same as “Case Study 1”

»Use NESTML language in NEST simulator?

* Doesn’t support continuous interaction between single environment &
multiple neurons

[define dynamics of stimulus]



Case Study 3: Threshold Finding

(a) (b)
40 -+
step = 25mV run with neuron
vy = 25mV v =1y spiked? 54 % .__,..-o-'—"—i—.—i
S
= o ®—e—9p—n—0—a—sn
£ / Ne—0—e—0—s—s—s—s
decrease increase 9 0+ ; ) | | i : T
©
vy by step v by step € 0 2 4 6 8 10
\ / pr iteration
Lo}
Replace step % 40
o by step/2 'E,
7 L 20 -
c
4=

10 iterations
stop - 3
yes performed? ' ' ' ' '
20 40 60 80 100

gNA (mS/cm?)

Determine the voltage firing threshold of a neuron.
(a) Flowchart of bisection algorithm
(b) Refinement of threshold over iterations (three different Na densities)

15



Continued...

w v0 = 25*xmV+*ones(len(neurons))

it from brian2 import * 31 St'ﬂp = EE*E‘J

defaultclock.dt = 0.01i*ms

[ s cxomns e rismns = iz Set initial estimate and step width.

s gl = 0.3"m8/cm**2; gK = 36*mS/cme+2; C = 1»uF/cmes2

o gNa_min = 15+mS/cm++2; gNa_max = 100+mS/cm*+2

¢ eqs = "''dv/dt = (gl+*(El - v) + gNa*m*+3+h*(ENa - v) + gH*n**4+(EK - v)) / C : volt step = 25mV run with neuron
9 gha : siemens/meters+2 = %
10 dm/dt = alpham*(l - m) - betamsm ; 1 by = 2mv v="t mtiedt

i dn/dt = alphan#(1 - n) - batan*n : 1

12 dh/dt = alphah*(1 - h) - batahsh : 1

1 alpham = (0.1/mV}=(=v + 25+mV)/(exp((-v + 25+*mV)/(10*mV}) = 1)/ms : Hz decrease Increase
14 betam = 4 * exp(-v/(18+nV))/ms : Hz uy by step vy by step
14 alphah = 0.07 = exp(-v/(20%mV))/ms : Hz

1 betah = 1/(exp((-v+30=mV) / (10+mV)) + 1)/ms : H=z \ /

" alphan = (0.01/mV) = (-v410smV) / (exp((-v+10#mV) / (10#mV)) - 1)/ms : Hz Replace step

I® betan = 0.126+exp(-v/(80*mV))/ms : Hz'"'

w neurcns = NeuronGroup(100, eqs, threshold='v > 50+mV', method='exponential euler') no by step/2

x neurons.gNa = 'gNa_min + (gNa_max - gNa_min)=1.0=i/N' /

2l neurons.v = O+mV

10 iterations

neurons.m = '1/(1 + betam/alpham)’ stop
»n neuroms.m = '1/(1 + betan/alphan)' yes performed?
24 mneurons.h = '1/(1 + betah/alphah)’
3 8§ = SpikeMoniter(neurcns)
o swesel 33 for i in range(10):
: :O;‘-:‘ ;;::;fo;:;(ie;h}eu;ons.n H res-bore(]
11 step = 25+mV
» 35 neurons.v = v0
n for i in range(10):
w  mestors() 3 run (20*ms)
35 neurons.v = vl
“ run(20+ms) 37 vO[S.count == 0] += step
5 vO[S.count == 0] += step
e vO[S.cnu.ntA?’ 0] -= step 38 vﬂ [S i CD]JIlt } D] —— Step
£ step /= 2.0
39 step /= 2.0
Perform the bisection for a certain #iteration.




Continued...

Comparison to other approaches

» Use language such as LEMS / NeuroML2?
* Can only specify duration and step size

»Use NEST simulator?
* Like Brian2; use SLI or Python

»Use NEURON simulator?
* Like Brian2; use HOC or Python

[define arbitrary protocols]



Case Study 4: Real-time Audio

Spectrogram of sound signal
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& b o

Detect the pitch based on autocorrelation of a signal.
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Continued...

t  from brian2 import #
import os
set_device('cpp_standalone')

sample_rate = 48+kHz; buffer_size = 128; defaultclock.dt = 1/sample_rate
max_delay = 20+ms; tau_ear = l¥ms; tau_th = S+ms
50*Hz; max_freq = 1000*Hz; num_neurons = 300; tau = l*ms; sigma =

SAMPLE_RATE, BUFFER_SIZE, NULL, NULL) TWO mOdES:
(1) Runtime mode:
* Python controls overall simulation.
I 1 * It calls compiled code objects to do heavy lifting.
€ o, e * Overhead: Repeated switching from Python to another language

Pa_ReadStream(stream, buffer, BUFFER_SIZE);

T = Justified if flexibility is preferred

¥
return buffer[next_sample++];
}''*, libraries=['portaudio’], headers=['<portaudio.h>‘],
0 define_macros=[('BUFFER_SIZE', buffer_size),

. ('SAMPLE_RATE', sample_rate)]) (2) Standalone mode:

icheck_units(t=second, result=1)
def get_sample(t):

raige NotImplementedError('Use a C++-based code generation target.') i LOW_IeveI COde iS generated .

. .
eqs_ear = ''‘dx/dt = (sound - x)/tau_ear: 1 (unless refractory) L It Controls overa” Slmulatlon-
dc = (0.1%x - th)/tau_th : 1
sound = clip(get_sample(t), 0, inf) : 1 (constant over dt)''' Abl t t d f t t I tf (GPU)
receptors = NeuronGroup(!l, eqs_ear, threshold='x>th', ° e O genera e Co e Or arge p a orm
40 reset='x=0; th = th*2.5 + 0.01"',
4l refractory=2+ms, method='exact')
42 receptors.th =1
"
: eqs_neurons = ''‘dv/dt = -v/t igma*(2./tau)*s* . S*xi : 1
45 freq : Hz (c ant) ‘"'
" neurons = NeuronGroup(num_neurons, eqs_neurons, threshold='v>1',6 reset='v=0',k method='euler')
neurons.freq = 'exp(log(min_freq/Hz)+(i*1.0/{num_neurons-1))*log(max_freq/min_freq))+Hz'
i
# synapses = Synapses(receptors, neurons, on_pre='v += (.5', multisynaptic_index='k')
il synapses.connect(n=2) # one synapse without deloy t
st synapses.delay['k == 1'] = '1/freq_post 19

run(10#*second)



Continued...

Comparison to other approaches

» Use language such as LEMS / NeuroML2?
* Not possible

> Use NEST simulator?

» Utilize MUSIC framework to couple multiple simulators
e Cannot apply continuous-valued inputs

»Use NEURON simulator?

* Can include user-written C code
* No documented mechanism to link external libraries

[define interface with other language]



Drawbacks

1. Explicit model definitions

* Difficult to design tools to programmatically inspect a model
= Rebuttal: Reduce risk of difference between implementation & description

2. Tightly integrated simulation flow

 Difficult to reuse or programmatically compare a model
= Rebuttal: Reduce complexity & chance of errors

3. No scaling up

* Lack of support for running large networks over multiple machines
= Rebuttal: Most people use smaller networks for parameter exploration.
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Continued...

4. Rudimentary multi-compartmental models
* Not as mature as NEURON or GENESIS simulator

5. Automated optimization techniques
* Generate optimization for specialization of models

execution time / biological time

=== NEST (12 threads)
NEURON
== Brian 1

homogeneous population

102 5
7 S
101 // _
A /
// ”
10° 4 /'/ A 7.
-‘—./‘ / = .7’-
] -—"=';ﬂ:"""'"-
-—-—-. - -/
I =l
1071 ~
T 10 10

Number of neurons

=== Brian 2: runtime
—+=Brian 2: standalone (single thread)

Brian 2: standalone (12 threads)

heterogeneous population

) T
. /?/.
27
o 2 7
e e
10 16 0

Number of neurons

CUBA benchmark




Questions?
Comments?
Concerns?



