
Brian 2
An Intuitive & Efficient Neural Simulator

Marcel Stimberg1, Romain Brette1, Dan FM Goodman2

1Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France

2Department of Electrical and Electronic Engineering, Imperial College London, UK



Overview

• Introduction

• Design implementation

• Case study 1: Pyloric network

• Case study 2: Ocular model

• Case study 3: Threshold finding

• Case study 4: Real-time audio

• Drawbacks

2



Introduction

Performance

Is it benefiting from:

• Vectorization techniques

• Pre-compiled models

Flexibility

Is it easy to define:

• Non-standard models

• Arbitrary protocols

3

Want your simulator to attract as many neuro-researchers as possible.



Continued…

Brian 2 solves this trade-off.

➢Flexibility: User-written Python script

• No limit on the experiment structure

➢Performance: Code generation

• Transform high-level model into low-level executable code

4



Design Implementation

1. Non-standard models

• Mathematical equations should be explicitly written.

2. Complete computational experiment

• Models must interact with general control flow.

3. Efficient code generation

• Generated code can integrate into the simulation flow.

4. Extensibility of code

• Code can be extended either at high- or low-level.

5



Case Study 1: Pyloric Network

Generate a stereotypical triphasic motor pattern.
(a) Circuit schematic

(b) Simulated neuron activity

(c) Simulated neuron activity (biologically detailed)

6



Continued…

Neuron model is written in differential equation.

7

Calcium trace increases at each spike.

Calcium trace decays.

Conductances are regulated by trace difference.



Continued…

Nonlinear (graded) fast synapse

8

Nonlinear (graded) slow synapse



Continued…

Set up initial values.

9

Connectivity pattern



Continued…

➢Implement in a language like C++?

• Requires significant technical skill

▪ Justified if iteration is done thousands of times

• Difficult to adapt for other purposes

➢Use description language such as LEMS / NeuroML2?

• Like Brian2, but somewhat more verbose

➢Use NMODL language in NEURON simulator?

• Requires learning new language

➢Use NESTML language in NEST simulator?

• Doesn’t support graded synapse

10

Comparison to other approaches

[d
e

fi
n

e
 n

o
n

-s
ta

n
d

a
rd

 m
o

d
e

ls
]



Case Study 2: Ocular Model

11

Two antagonistic muscles are modelled mechanically as elastic spring with friction.
(a) Circuit schematic

(b) Simulated activity of sensory neurons (black) & motor neurons (blue, orange)



Continued…

Position of eye follows 2nd-order differential equation.

12

Stimulus moves in a stochastic process.

Muscles are controlled by two motoneurons.



Continued…

Retinal neurons receive visual input.

13

Retinal neurons project on motoneuron to control muscle.



Continued…

➢Use language such as LEMS / NeuroML2 / NMODL?

• Same as “Case Study 1”
➢Use NESTML language in NEST simulator?

• Doesn’t support continuous interaction between single environment & 
multiple neurons

14

Comparison to other approaches

[d
e

fi
n

e
 d

y
n

a
m

ic
s 

o
f 

st
im

u
lu

s]



Case Study 3: Threshold Finding

15

Determine the voltage firing threshold of a neuron.
(a) Flowchart of bisection algorithm

(b) Refinement of threshold over iterations (three different Na densities)



Continued…

Set initial estimate and step width.

16

Perform the bisection for a certain #iteration.



Continued…

➢Use language such as LEMS / NeuroML2?

• Can only specify duration and step size

➢Use NEST simulator?

• Like Brian2; use SLI or Python

➢Use NEURON simulator?

• Like Brian2; use HOC or Python

17

Comparison to other approaches

[d
e

fi
n

e
 a

rb
it

ra
ry

 p
ro

to
co

ls
]



Case Study 4: Real-time Audio

18

Detect the pitch based on autocorrelation of a signal.



Continued…

19

Two modes:

(1) Runtime mode:

• Python controls overall simulation.

• It calls compiled code objects to do heavy lifting.

• Overhead: Repeated switching from Python to another language

▪ Justified if flexibility is preferred

(2) Standalone mode:

• Low-level code is generated.

• It controls overall simulation.

• Able to generate code for target platform (GPU)



Continued…

➢Use language such as LEMS / NeuroML2?

• Not possible

➢Use NEST simulator?

• Utilize MUSIC framework to couple multiple simulators

• Cannot apply continuous-valued inputs

➢Use NEURON simulator?

• Can include user-written C code

• No documented mechanism to link external libraries

20

Comparison to other approaches

[d
e

fi
n

e
 i

n
te

rf
a

ce
 w

it
h

 o
th

e
r 

la
n

g
u

a
g

e
]



Drawbacks

1. Explicit model definitions

• Difficult to design tools to programmatically inspect a model

▪ Rebuttal: Reduce risk of difference between implementation & description

2. Tightly integrated simulation flow

• Difficult to reuse or programmatically compare a model

▪ Rebuttal: Reduce complexity & chance of errors

3. No scaling up

• Lack of support for running large networks over multiple machines

▪ Rebuttal: Most people use smaller networks for parameter exploration.

21



Continued…

4. Rudimentary multi-compartmental models

• Not as mature as NEURON or GENESIS simulator

5. Automated optimization techniques

• Generate optimization for specialization of models

22
CUBA benchmark



Questions?

Comments?

Concerns?

23


