

A Technical Overview of the Neural Engineering Framework

Terrence C. Stewart

Centre for Theoretical Neuroscience technical report (2012)

University of Waterloo, Canada

Outline

- Intro
- Motivation
- Representation
- Computation
- Dynamics
- Symbol Processing
- Spaun & Nengo
- Limitations

Intro

What is Neural Engineering Framework (NEF)?

- A general methodology to build neural models that are
 - Large-scale
 - Biologically plausible
- Acts as a neural compiler
 - You specify
 - Neurons' properties, values,
 - Functions to be computed.
 - NEF solves for the connection weights.

Motivation

It's already hard enough to produce realistic cognitive behavior.

Why put extra overhead & constraint on models?

1. Evaluate our theories

- Produce correct behavior in the same way as real brain
 - Comparable firing patterns & neural connectivity
- Produce same effects of neural degeneration, lesioning, deep brain simulation, drug treatments, etc.
 - Comparable timing caused by neurons' biophysical properties

✓ End goal: Create new types of predictions

continued...

2. Explore new types of algorithms

- You don't get exact implementation.
 - NEF forces you to use the basic operations available to neurons.
- All classes of algorithms can't be implemented in human brain.
 - Constraints: timing, robustness, #neurons involved

✓ End goal: Find plausible method for implementing symbol-like cognitive reasoning

Representation

Distributed representation

- Activity of a group of neurons
- Value being represented

Encoding:

$$a_i = G(\alpha_i \mathbf{e}_i \cdot \mathbf{x} + b_i)$$

activity model gain encoding vector value constant background bias current

continued...

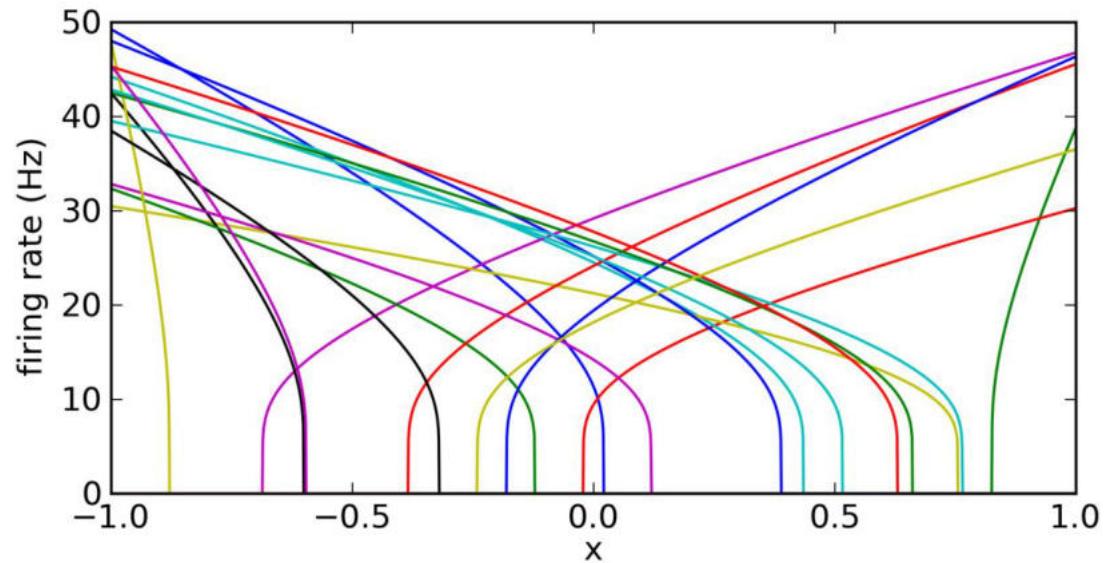
Decoding:

$$\hat{\mathbf{x}} = \sum a_i \mathbf{d}_i$$

where,

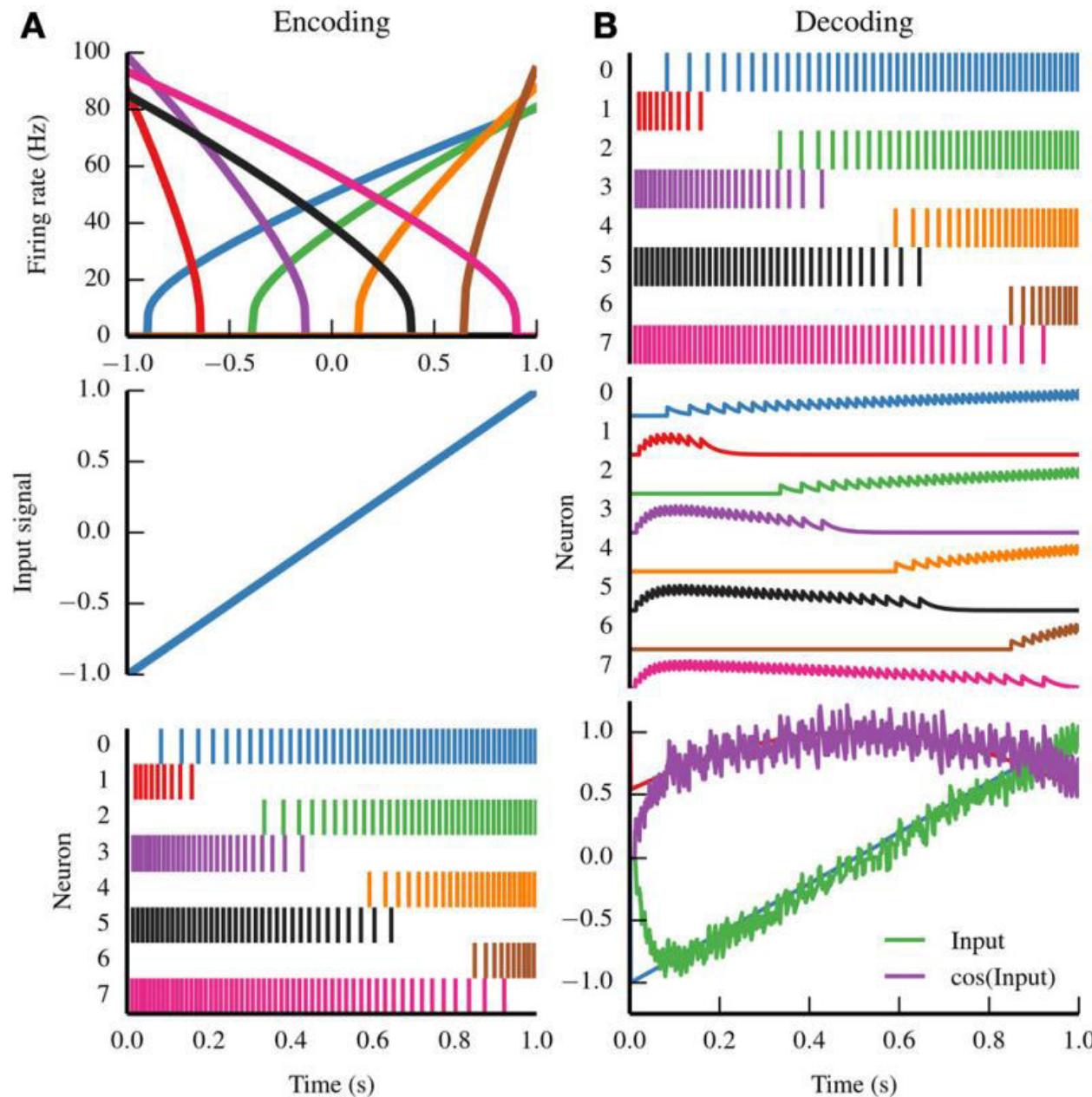
$$\mathbf{d} = \Gamma^{-1} \boldsymbol{\gamma}$$

$$\Gamma_{ij} = \sum_{\mathbf{x}} a_i a_j \quad \boldsymbol{\gamma}_j = \sum_{\mathbf{x}} a_j \mathbf{x}$$



Average firing rates for 20 different LIF neurons. α_i and b_i are randomly chosen to give a realistic range of responses. Neurons whose firing increases with \mathbf{x} have $\mathbf{e}_i = 1$, while the other neurons have $\mathbf{e}_i = -1$.

continued...



Computation

Let's compute $f(\mathbf{x}) = \mathbf{x}$, using two populations A & B.

Naïve approach: Connect (i^{th} neuron of A) to (i^{th} neuron of B)

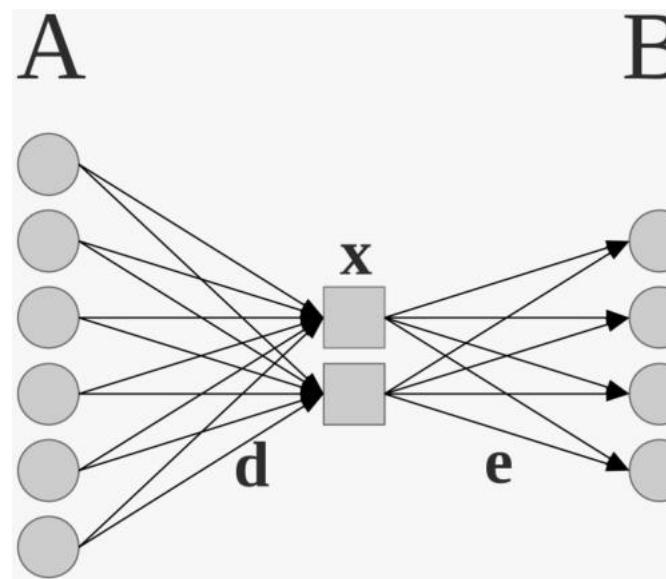
Problems:

- (#neuron in A) \neq (#neuron in B)
- α_i and b_i might be different between A & B.
- Model G is most probably nonlinear.

continued...

Solution: Assume that we have an intermediate group of perfectly ideal linear neurons (one for each dimension).

- From decoding equation, compute \mathbf{x} from a_i using weights \mathbf{d} .
- From encoding equation, compute input current by combining \mathbf{x} with \mathbf{e} .



continued...

But real brain doesn't have these idealized intermediate A neurons.

- However, they are completely unnecessary.

We can adjust decoding equation to approximate any function $f(\mathbf{x})$.

$$\mathbf{d}^{f(\mathbf{x})} = \Gamma^{-1} \boldsymbol{\gamma}^{f(\mathbf{x})} \quad \Gamma_{ij} = \sum_{\mathbf{x}} a_i a_j \quad \boldsymbol{\gamma}_j^{f(\mathbf{x})} = \sum_{\mathbf{x}} a_j f(\mathbf{x})$$

Takeaway: Any nonlinear function can be approximated with a *single layer* of connection.

But the accuracy will be affected by:

- Nonlinearity and discontinuity of $f(\mathbf{x})$,
- Neuron properties and encoding scheme.



continued...

- NEF is using the same trick seen in SVM.
 - Randomly choose \mathbf{e}_i .
 - This is random projection.
 - Randomly choose α_i and b_i .
 - $f(\mathbf{x})$ ends up being a linear sum of tuning curves.
Wider variety of tuning curves leads to better $f(\mathbf{x})$ approximation.
- NEF allows to add values by simply feeding inputs into the same group of neurons.
 - $A \rightarrow C$ with connection weights that compute $f(\mathbf{a})$.
 - $B \rightarrow C$ with connection weights that compute $g(\mathbf{b})$.

C will end up with activity pattern that represents $f(\mathbf{a}) + g(\mathbf{b})$.

Dynamics

NEF provides a direct method for computing dynamic functions of the form:

$$\frac{d\mathbf{x}}{dt} = A(\mathbf{x}) + B(\mathbf{u})$$

Building this system requires you to know the neurotransmitter time constant (τ).

- τ reflects how quickly the neurotransmitter (released by a spike) is reabsorbed [2 ms \sim 200 ms].
- Once known, you can compute the desired $d\mathbf{x}/dt$ by creating a set of feedback connection weights.

continued...

A special case:

$$\frac{d\mathbf{x}}{dt} = \mathbf{u}$$

An integrator: $\mathbf{u} = 0 \rightarrow$ system holds current state

$\mathbf{u} > 0 \rightarrow$ value will increase

$\mathbf{u} < 0 \rightarrow$ value will decrease

In the feedback connection, neurons are passing information back to themselves.

Other complex models are also possible:

- Oscillators ($d\mathbf{x}/dt = [\mathbf{x}_2, -\mathbf{x}_1]$)
- Frequency-controlled oscillators ($d\mathbf{x}/dt = [\mathbf{x}_3\mathbf{x}_2, -\mathbf{x}_3\mathbf{x}_1]$)
- Kalman filters
- Chaotic attractors, etc.

Symbolic Processing

How can neurally realistic models possibly represent something like “Dogs chase cats” to distinguish it from “Cats chase dogs”?

➤ Vector Symbolic Architecture (VSA)

- Use vectors for each basic symbol
- Combine these vectors with various mathematical operations
- Produce new vectors that encode full symbol structures

VSAs are lossy.

- As symbol tree structure gets more complex, the accuracy of extracting the original vectors decreases.

continued...

Example:

- Create unit vectors for each basic symbol (DOG , CAT , $CHASE$, $SUBJECT$, $OBJECT$, $VERB$, etc.).
- To create a symbol structure, you need two operations: addition (+) and circular convolution (\otimes).
- Sentence “Dogs chase cats” would then be
$$S = DOG \otimes SUBJECT + CHASE \otimes VERB + CAT \otimes OBJECT$$
- Extract a particular component by computing
$$S \otimes SUBJECT^{-1} \approx DOG$$

Note: Both “+” and “ \otimes ” can be easily approximated by NEF.

Spaun

Largest cognitive model (as of 2012)

- 2.5 million spiking neurons
- A vision system (Deep Belief Network with NEF)
- Single 6-muscle 3-joint arm for output

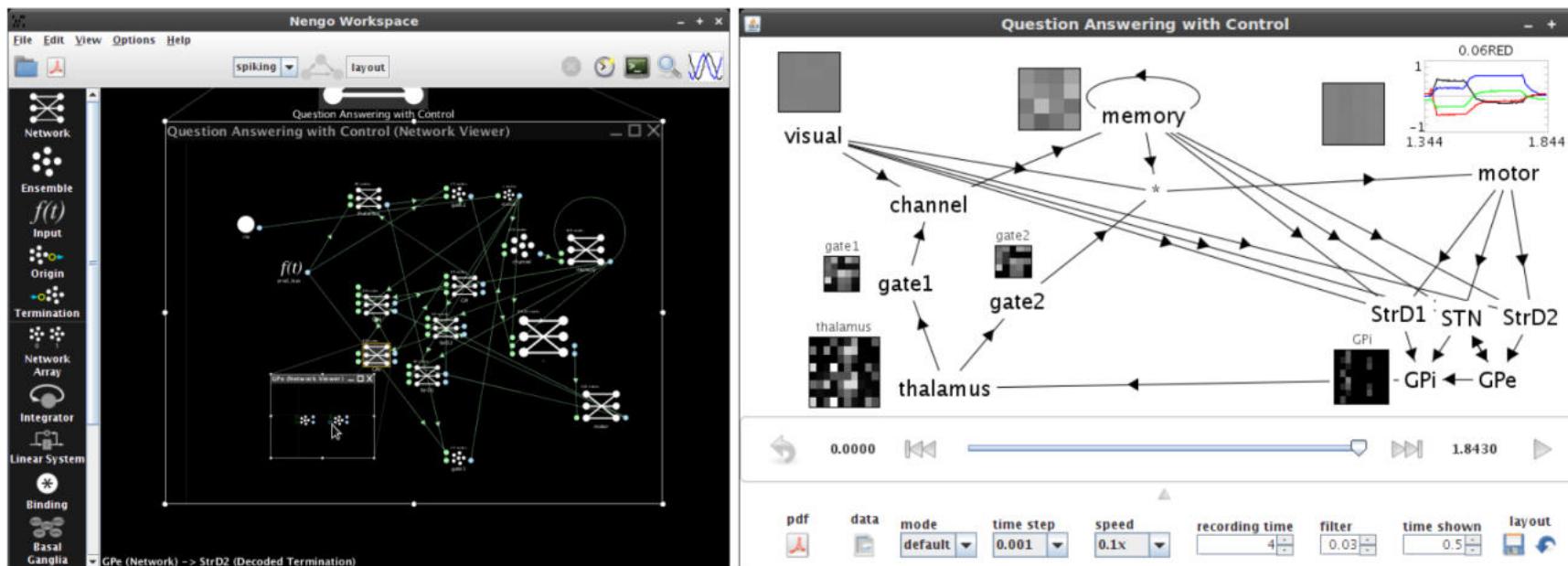
Can perform 8 different tasks, including:

- recognizing hand-written digits
- memorizing digit lists
- pattern completion
- mental addition

Nengo

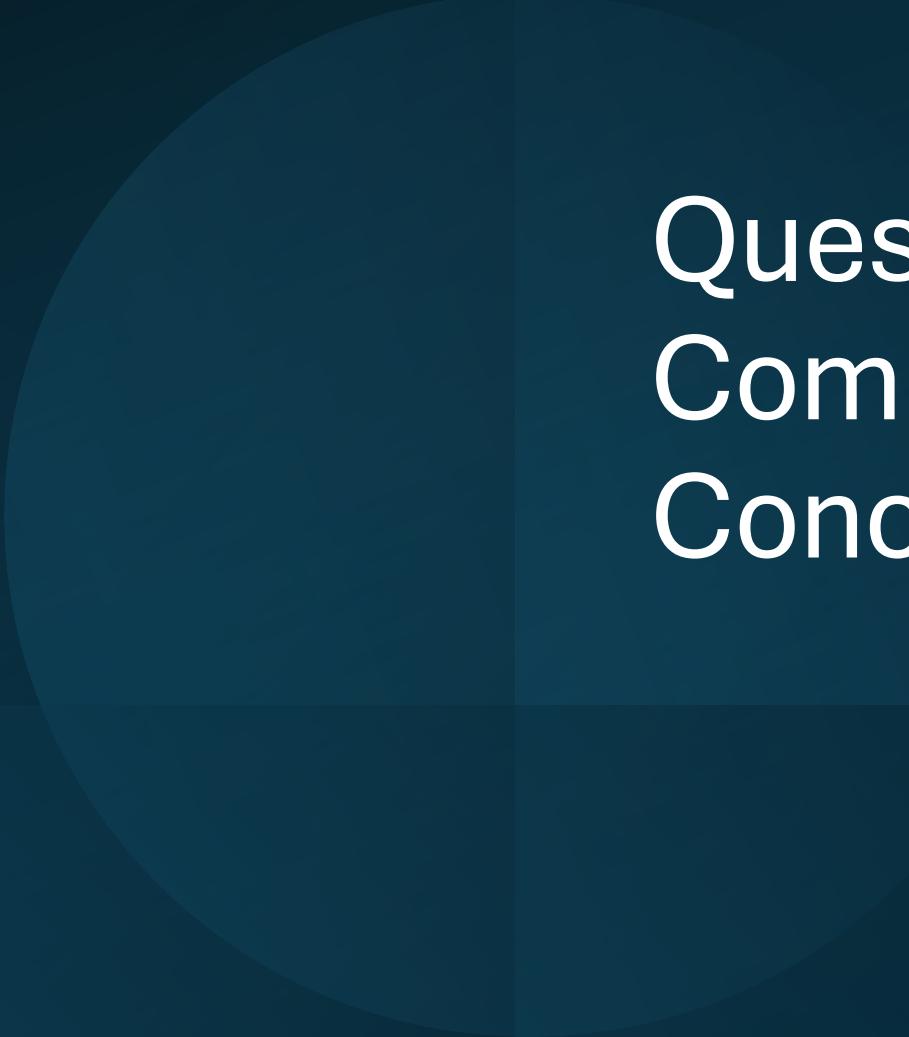
Open-source cross-platform application which implements NEF

- Drag-and-drop interface / Python scripting
- $f(x)$ to approximate are similarly specified.
- Nengo automatically computes the optimized connection weights.



Limitations

- Oversimplification of neurotransmitters
 - Neurotransmitters have many functions apart from just being a time constant.
- Absence of nonlinear decoding
 - Complex neural models usually have multiple time constants and nonlinear synaptic effects.
- Lack of developmental explanation
 - NEF only describes fully formed, adaptive, but non-developmental networks.



Questions?
Comments?
Concerns?