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What is Direct Memory Access?

Feature that enables some hardware
subsystems to access primary
memory independent from the CPU.

From the CPU’s perspective, it:

initiates the transfer first

does other tasks while the
transfer is ongoing

waits for the DMAC to interrupt it when the
operation is complete

* DMAC = Direct Memory Access Controller
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System with AXI4-Lite

AXI| = Advanced eXtensible Interface

Communicates using 5 independent channel sets:

* Read Address channel (AR)
* Read Data channel (R)

* Write Address channel (AW)
* Write Data channel (W)

* Write Response channel (B)
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Vivado Simulation for AXl4-Lite Write Handshaking
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Vivado Simulation for AXl4-Lite Read Handshaking
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Crossbar Switch

v'Needed when there are multiple masters or multiple slaves.
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Peripheral(s)
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Part of the CPU

Receives 6-bit service request from the
Interrupt Handler

Sends 2-bit status to the Interrupt
Handler

Gets DMA status directly from the DMAC

Sends data and address to the DMA
Register module when suitable

Controls the crossbar



continued (ISR) ...

[1:0] Shtus:lg
[5:0] reques

— & Status (00: ready to receive request, DMAC is also free;
01: packets are being sent to DMAC from ISR;
1 10: ready to receive request, but DMAC is busy)

L LI L—eDirection (1: Peripheral wants to write;
0: Peripheral wants to read)
——— Data Length (00/01: Word;
10: Halfword;
11: Byte
# Priority (1: don't care if DMA busy;
0: wait if DMA busy)
¢ Peripheral ID (00: No request;
01/10/11: valid ID)

Three packets to be sent to DMAC (via DMA Reg) from
ISR:

mode: encapsulates the 6-bit request from the
Interrupt Handler

init addr: the starting address of the SRAM
available for the DMAC to read or write

range: how many transaction the DMAC would do
with the SRAM

With appropriate request, the ISR:

Turns on the

Sends 32-bit at address
©x0000 ABCD

Sends 32-bit at
address Ox0000 ABCD + 1

Sends 32-bit at
address 9x0000 ABCD + 2

Turns off the




continued (ISR) ...
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Prepare to load
and at Send as Wait until
next posedge clk. ‘bol. is free to write. Stop accessing

Wait until . at next
is free to write. > posedge




crossbar<}:{>

DMA Register

* \Verifies the address (0x0000 ABCD)

DMAC i olseauenee from ISR
< - * Transfers , ,
packets from ISR to DMAC
A DMA Register * Sends 2-bit info to DMAC for
discerning those three 32-bit packets
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continued (DMA Reg) ...

ISR Handler
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DMAC

* Has 3 registers to save

ISR (CPU) A dea ,
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continued (DMAC) ...
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continued (DMAC) ...
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DMAC ’ M2_axi  [31:0] addr 0000000 300, DO000064 D000006E OB00006C DOO00070 00000074 00000000

DMAC <@@M2_axi  axi_rdbusy
DMAC > M2_axi axi_stb

is ready to access LN is free to read. is free to read. LA Repeat for LN is free to read.
. Output D Load Load LM 9x0000_0060+(4x3), A But is

is high. ™ 0x0000_0060+(4) at 0X0000 B060+(4x2) LM 0x0000_0060+(4x4), R LN o hausted.
is free to read. next posedge . at next posedge Lﬂ\ 0x0000_0060+(4x5) Rl

Load low at next posedge
Ox0000_0060 at next

posedge Stop accessing

at next posedge

P> P> P>

But why increment by 4 (instead of 1)?




SRAM Wrapper

sfTwea— e Encapsulates 4 banks of SRAM block,
s N &\  eachsized 16x32x8
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Overall Hierarchy

9. test
DMAC : £ RTL (t
@ °P- 4 , A / , N
< @ dummyP : axi_wrap_proc axi_wrap_proc.sv axi_wrap_dma.sv
® I5R: dummyProcessor
¥ ) <> < .
@ master: axi_master dummyProcessor.sv [€«—»{axi_master.sv axi_master.sv [€«—»{ dma_ctrl.sv
« @ dmac : axi_wrap_dma I
® dmaContrel : dma_ctrl (d t \ / k A /
@ master: axi_master er / \ 5) p .
® dmaREG : axi_wrap_dmareg I ] : /mem_interface_sv\ a .
® slave : axi_slave ‘ : > &> axi_slave.sv [«—»{dma_reg.sv
® dmaReg : dma_reg sram_compiled.sv 8 -
_ R , , = axi_wrap_dma.sv
® SRAM ; &xi_wrap_mem sram_compiled.sv| [«—>| axi_slave.sv | |¢ 3 © \ /
@ slave : axi_slave -
» @ sharedmem : mem_interface_dmem erf sram_compiled.sv
» @ genblkl[0].dcell ; sram_compiled_array sram_compiled.sv
» @ genblkl[1].dcell : sram_compiled_array

® genblikl [2].deell ; sram_compiled_array \ axi_wrap_mem.sv /
- top_RTL.sv

» @ genblkl[3).dcell : sram_compiled_array

@ =barCentral : crossbar



CPU writes to SRAM

DMAC reads from SRAM

clk
reset_n

- [31:0] data

. [31:0] addr
SRAM « S2_axi
[31:0] data

clk
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[31:0] addr
DMAC I M2_ax { .
axi_stb

. [31:0] data
DMAC « M2_axi

axi_valid

DATA we wanted [31:0] data
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Upcoming Plans

»Add cycle-stealing mode

* We've only introduced burst mode.

» Attach three dummy peripherals
e with the Interrupt Handler

» Complete the physical layout
e with partitioning



Questions?
Comments?
Concerns?



