Direct Memory Access Controller

Design Review
ECE 551 — SoC Design

Members (Team 4):
e Sk Hasibul Alam
e Milad Tanavardi Nasab

* Tanjina Sabrin

What is Direct Memory Access?

Feature that enables some hardware
subsystems to access primary
memory independent from the CPU.

From the CPU’s perspective, it:

initiates the transfer first

does other tasks while the
transfer is ongoing

waits for the DMAC to interrupt it when the
operation is complete

* DMAC = Direct Memory Access Controller

< DMA Request
DMA Acknowledge >
CPU DatalBus DMAC
Address Bus
< m >
— % © —
— 83 CEEER
< o
Peripheral
Memory Device
— —

System with AXI4-Lite

AXI| = Advanced eXtensible Interface

Communicates using 5 independent channel sets:

* Read Address channel (AR)
* Read Data channel (R)

* Write Address channel (AW)
* Write Data channel (W)

* Write Response channel (B)

CPU DMAC

AXl4-Lite

Peripheral

SRAM Device

Wiite address chamel

Address
and

control
—>
Wiite data chamel
Master Write Write Write Slave
interface data data data interface
> > >
Wiite response channd
Write
resporse
-
Read address channd
Address
and
control
Master |~ Slave
interface Read data channd interface
Read Read Read
daa dda dda
< < <

during WRITE

during READ

Read Cycle Write Cycle
o |
e/ e -/
01 A X X '\"*S [31:01AW, X X
/ \ T 2 / \
AAAAAAA I\ wms I\
X s o l f
RRRRRR / \ s owsts Y X
o X s / \
[T | v e /)
v s o / \
M«S [1:0] X
) .

AXI4-Lite Transaction

Vivado Simulation for AXl4-Lite Write Handshaking

0.000 ns llD.EUD ns 20,000 ns JED.UEG ns 40.000 ns lZD.EUD ns 60.000 ns JTD.GEG ns S0.000 ns
.ILJILJI.I_JILJT.ILJ I.JI.iI.JII.|.|I.JILJI.ILJILJI.I_JILJT.ILJ LJI.iI.JII.|.||.J||.J|.||.J|l]|.
RESETN
MBS [31:0] AWADDR [SCC " 00600000 .. CO0GO0ES { 00600060
Mm-S AWVALID ' |
M-<mms AWREADY | |
Mm-S [31:0] WDATA |EEESES : G0B0GE00 .
Mm-S [3:0] WSTRB S
Mm-S WVALID
M-S WREADY

Mm-S BREADY
M-<mms [1:0] BRESP
M<@mS BVALID

—

0oCo0000 iy oooEaGeEd f QO00Coe0 , QOC000o4

Read signals
(don't care now)
e

[elefwlaloletole]
I
-

N S X Y
nms ey 0\
T - X Y
M » S [3:0] WSTRB X X
n s WA AR L
M « S WREADY /—\
mems nosres X

M « s BVALID

Mm-S
Mm-S
M-<@mms
M<@mms
Mm-S
M<@mms
M-<@mms

Vivado Simulation for AXl4-Lite Read Handshaking

I JBSE.DSD ns l4DG.GDD ns 410.000 ns J4EE.DJD ns]433.DDE ns 1440.003 ns 450.000 ns J4EE.DSD ri
Ll N TN TN TN N AN T T T - TR TN N AT T R N N A H N T F S T N S T N A T T T T S T TN T AT T T A ——— |
CLK | ' ' [- | | | .
RESETN
[31:0] ARADDR BOBO6E60 (DODOOBED OoE06600 [0000004, [6]ala]slols2l6]
ARVALID _ | _ _ | _ |
ARREADY _
[31:0] RDATA K o - Gavefedc -
RREADY "“‘j“““““‘f“““
[1:0] RRESP _ 3 _
RVALID
—

00036000 P = s 0 e T=Ts I QEIG0000 S DODO00SE GO000C30

Q000000
I I I I I
B

Write signals
(don't care now)
e

— &

CLK

RESETN

[31:0] ARADDR X ><
ARVALID / \
ARREADY /_ _\
[31:0] RDATA X ><
RREADY / \
[1:0] RRESP X ><
RVALID / \

=
]

<
[}

4
(2]

<
[}

4
(%]

t1it4dd

=
[©]

Crossbar Switch

v'Needed when there are multiple masters or multiple slaves.

master_1 . master_1 S - slave_1 . slave_1
module AXI AXI module
master_2 master 2 © slave 2 slave 2
moduie [€ 2| Ax [€ @ 1 aAxi [module
o)
master_3 S master 3 :) B slave 3 S slave 3
module AXI = AXI module
mast.er_n S mas’Eer_n B T slav.e_m S slav.e_m
module AXI AXI module
control_signal J
request
l controlﬁ
)
o ter 1 ter 2]
Q CPU master_ - master_. DMAC
o AXI 3 AXI
o 7 A
n slave 2 o slave_1 DMA
< SRAM €= i €21 6 [axi [Register
= =
- slave_3 . Peripheral
é AXI 01

Peripheral(s)

Y v\

Interrupt Handler

A /’6
2y

-

ISR

’ ’
1 .
.
L
LA
s
.
’ A}
1
1 1

CPU |

Y

LDMA bus

DMAC

Interrupt Service Routine (ISR)

/——{31:0] data—>"
/ ——[31:0] addr—>!

E axi_enable—»
——{2:0]axi_op—>
C)

Master_1
AXI <}:{>crossbar

N J
«—{31:0] data—s
‘\ i(busy !
“ € rd_busy
\ €«—valid
":(err

Part of the CPU

Receives 6-bit service request from the
Interrupt Handler

Sends 2-bit status to the Interrupt
Handler

Gets DMA status directly from the DMAC

Sends data and address to the DMA
Register module when suitable

Controls the crossbar

continued (ISR) ...

[1:0] Shtus:lg
[5:0] reques

— & Status (00: ready to receive request, DMAC is also free;
01: packets are being sent to DMAC from ISR;
1 10: ready to receive request, but DMAC is busy)

L LI L—eDirection (1: Peripheral wants to write;
0: Peripheral wants to read)
——— Data Length (00/01: Word;
10: Halfword;
11: Byte
Priority (1: don't care if DMA busy;
0: wait if DMA busy)
¢ Peripheral ID (00: No request;
01/10/11: valid ID)

Three packets to be sent to DMAC (via DMA Reg) from
ISR:

mode: encapsulates the 6-bit request from the
Interrupt Handler

init addr: the starting address of the SRAM
available for the DMAC to read or write

range: how many transaction the DMAC would do
with the SRAM

With appropriate request, the ISR:

Turns on the

Sends 32-bit at address
©x0000 ABCD

Sends 32-bit at
address Ox0000 ABCD + 1

Sends 32-bit at
address 9x0000 ABCD + 2

Turns off the

continued (ISR) ...

220,000 ns I 250,000 ns 300,000 ns S20.000 ns 340,000 ns 350, 000 ns S50,000 ns e

|
reset_n |

ISR ‘ Handler [5:0] request (I |

ISR » M1_axi (to DMAC) [31:0] data Tbb 3791 OBO0O0Z0 BOGODDED BO00000S
|SR»M1_axi (to DMAC) [31:0] addr 0G000074 UL‘.IJUJL-:_L:| OO00Dabce OOO0abe T
ISR W Handler [1:0] status &

ISR <@@DMAC dma_busy !

ISR <@@M1_axi M1_axi_wbusy ‘

ISR <@@M1_axi M1_axi_rdbusy |

ISR W M1_axi axi_stb

O New is LN Latch the LN Load into LN Load LN Load LN
coming from ID: 2 . . into . . 00

. ! o Send as
(‘b10_0000) via is free to Load Load Load ‘b10 to

write. 0x0000_ABCD into 0x0000 ABCD+1 0x0000_ABCD+2
into . into . at next
posedge

is now busy.

Prepare to load
and at Send as Wait until
next posedge clk. ‘bol. is free to write. Stop accessing

Wait until . at next
is free to write. > posedge

crossbar<}:{>

DMA Register

* \Verifies the address (0x0000 ABCD)

DMAC i olseauenee from ISR
< - * Transfers , ,
packets from ISR to DMAC
A DMA Register * Sends 2-bit info to DMAC for
discerning those three 32-bit packets
J N J
Y 1310] data—>
——[31:0] addr—)i

I 1
“—reg_enable—>»

continued (DMA Reg) ...

ISR Handler

ISR M1_axi

ISR M1_axi
DMA Reg <@l S1_axi
DMA Reg <@l S1_axi
DMA Reg I DMAC
DMA Reg B> DMAC

wn Valid

00 (0x0000 ABCD)

clk

reset_n

[5:0] request
[31:0] data
[31:0] addr
[31:0] data
[31:0] addr
[31:0] data
[1:0] sequence

LN Copy

220,000 ns

20
fEbF37al
0Q00007 4

BO606000
GOO00000

from
to

B0000020

UCUCJLLJ

FEBF3791

50000074

BOGOO00G
o

wn Valid
N (0x0000 ABCD+1)

Qoa. .,
QOO00000

280,000 ns 300,000 ns

COG0R0s0

OOGDabee
e alela o]

COG0abca

ogo. .
Qo00C0G0

010 R016 00

Copy from

o
™ to

L0000G05

O000abe T

GOGO00EG /000, ..
I
O00Cabce QRG0OG0O0

QBN

n Valid
O (0x0000 ABCD+2)

a0, 000 ns

350,000 ns

Qe00000s ooe. |

0oe0abe f QO000000
OO

3

from
to

LN Copy

detected from Tell

detected from Tell detected from Tell

this is the
3" packet.

this is the
2" packet.

this is the
15t packet.

DMAC

* Has 3 registers to save

ISR (CPU) A dea ,
1 {10 add—) packets from DMA
3 —axi_enable—> R . t d |
< [e op>, €glster module
| Starts transacting with SRAM after
- N L N :
o saving all three packets

DMAC o <:::>Cr033bar * Keeps HIGH during
' transaction with SRAM

\ 7R N J
T4 N * Continuously polls if the priority bit
S 3 | [l (within) is HIGH
2 @ \ E busy :
' ; . <€——rd_busy
‘ | i —valid
DMA Register —en

continued (DMAC) ...

ns 280,000 ns

clk

reset_n

DMAC <@@IDMAReg [31:0] packet
DMAC ‘ DMAReg [1:0] sequence o

[31:0] mode
[31:0] init_addr
[31:0] range

dma_busy

EelEelela/es

local
variable

&)
<
>
(@)
w
Py

9 Input 9 Save the

is f
‘dl, so the var.
must be

mode.

>

into

QoOC0G0G

o Input

AE0.000 ns SO0, 000 ns 120, 000 ns

LoooocA0

QOO0AGA0

1
Coeoo000

1) Save the

(0]

IS into

‘d2, so the

must be
init addr.

>

2 Input

260.000 ns

Glelelelelelahel LOEGOC0S

o
I

QOADIGEA
BOG000E0
|

Eelebleeo=

LN

5 Save the
o0 into
var.

Assert the

high.
2

IS
‘d3, so the

must be
range.

continued (DMAC) ...

400, 000 ns 420,000 ns 440.000 ns 460. OF 15 450,000 ns S00.000 ns 520.000 ns 540.000 ns
NS T N NN T T ——— SN T T T T " ——

clk

reset_n

[31:0] mode OROOEA20
. [31:0] init_addr COE0E0E0
[31:0] range [RESkEEEEE DOGOBA6S

DMAC B> ISR dma_busy
DMAC ’ M2_axi [31:0] addr 0000000 300, DO000064 D000006E OB00006C DOO00070 00000074 00000000

DMAC <@@M2_axi axi_rdbusy
DMAC > M2_axi axi_stb

is ready to access LN is free to read. is free to read. LA Repeat for LN is free to read.
. Output D Load Load LM 9x0000_0060+(4x3), A But is

is high. ™ 0x0000_0060+(4) at 0X0000 B060+(4x2) LM 0x0000_0060+(4x4), R LN o hausted.
is free to read. next posedge . at next posedge Lﬂ\ 0x0000_0060+(4x5) Rl

Load low at next posedge
Ox0000_0060 at next

posedge Stop accessing

at next posedge

P> P> P>

But why increment by 4 (instead of 1)?

SRAM Wrapper

sfTwea— e Encapsulates 4 banks of SRAM block,
s N &\ eachsized 16x32x8

SRAM_1
crossbar<}:{> S'%Z_Z SRAM 2
. SRAM_3

SRAM_4
—/

——1{31:0] data—>"
——(31:0] addr—»!

s i—mem_enable—)i
‘\j—[3:0] w_strb—)i

Overall Hierarchy

9. test
DMAC : £ RTL (t
@ °P- 4 , A / , N
< @ dummyP : axi_wrap_proc axi_wrap_proc.sv axi_wrap_dma.sv
® I5R: dummyProcessor
¥) <> < .
@ master: axi_master dummyProcessor.sv [€«—»{axi_master.sv axi_master.sv [€«—»{ dma_ctrl.sv
« @ dmac : axi_wrap_dma I
® dmaContrel : dma_ctrl (d t \ / k A /
@ master: axi_master er / \ 5) p .
® dmaREG : axi_wrap_dmareg I] : /mem_interface_sv\ a .
® slave : axi_slave ‘ : > &> axi_slave.sv [«—»{dma_reg.sv
® dmaReg : dma_reg sram_compiled.sv 8 -
_ R , , = axi_wrap_dma.sv
® SRAM ; &xi_wrap_mem sram_compiled.sv| [«—>| axi_slave.sv | |¢ 3 © \ /
@ slave : axi_slave -
» @ sharedmem : mem_interface_dmem erf sram_compiled.sv
» @ genblkl[0].dcell ; sram_compiled_array sram_compiled.sv
» @ genblkl[1].dcell : sram_compiled_array

® genblikl [2].deell ; sram_compiled_array \ axi_wrap_mem.sv /
- top_RTL.sv

» @ genblkl[3).dcell : sram_compiled_array

@ =barCentral : crossbar

CPU writes to SRAM

DMAC reads from SRAM

clk
reset_n

- [31:0] data

. [31:0] addr
SRAM « S2_axi
[31:0] data

clk

reset_n

[31:0] addr
DMAC I M2_ax { .
axi_stb

. [31:0] data
DMAC « M2_axi

axi_valid

DATA we wanted [31:0] data

300,000 ns

e lalale]

eliTeleeloTe]

SRAM Transactions

oleeleleile]e]

00GoDooo

[€¢ clo]6 6 ec]

[slelerelolalele]

Upcoming Plans

»Add cycle-stealing mode

* We've only introduced burst mode.

» Attach three dummy peripherals
e with the Interrupt Handler

» Complete the physical layout
e with partitioning

Questions?
Comments?
Concerns?

