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What is overclocking?

Deliberate practice of exceeding a component’s manufacturer-specified
clock rate

Done by modifying:
* Clock multiplier

* Bus clock rate ‘33;’
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Types of Overclocking

VF-Overclocking F-Overclocking

* Increases f.;; and Vpp simultaneously ¢ Increases f;; only

* Leads to very high Pyynamic * Leads to high Pyynamic
 Examples: * Not widely adopted

> Intel Turbo Boost, AMD Turbo Core
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Evaluation of F-Overclocking

Clock Supply
Scheme Frequency | Voltage
(MHz) (V)
Baseline 3000 1.250
DVFS Step 1 2000 1.100 .
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Adaptive Overclocking Controller

Receive anapplicationname
from OS

!

Phase

(T ?

Applicationls in Detection
the profiled Stage
applicationlist?
JY‘;
No Average IPC of
the phaseis higherthan threshold
ue (IPCinrosno
Yes
Clock Frequency
Nominal clock frequency Highestpossible clockfrequency Selection
(Faominai) (Trighes?) Stage
Reliability
No /{pe rature Is Investigation
higherthantriggervalue Stage

Yes

* For performance, set IPCpreshoid |1OW.

* For reliability, set IPC¢presnoig high.



continued...

3 cases:
* F-Overclocking with air cooling
* F-Overclocking with liquid cooling

* F-Overclocking with adaptive controller
& air cooling

Incremental Rate (%)

& Execution tme with the air cooling —a— Execution ime with the adaptive controller
—a— Execution ime with the liquid cooling O - Energy consumption with the ar cooling
--@-- Energy consumption with the adaptive controller --@-- Energy consumption with the liquid cooling

©o— FIT with the air cooling —e— FIT with the adaptive controller
—a— FIT with the liquid cooling
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Dynamic Processor Overclocking

Pr g P limit

t
P P limit
Tt

fi>f2

IBM Research Report RC23747, 2005, Austin, TX

A service is invoked every 10 ms.

Monitor:

* Performance counters (Instr. Decode)

* Power
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Speedup
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Memory Underclocking

 Memory power consumption: background + operation + R/W +1/0
* If memory traffic is high - CPU overclocking will degrade EDP.

* If EDP improves from CPU overclocking - memory traffic is low.
» Memory underclocking will further improve EDP.

frnem = 1600MHz frem = 2133MHz
frnem = 1866MHz
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Holistic Energy-Efficient Algorithm

Input: A given program, memory traffic ratio threshold
«, and processor time ratio threshold [
OUtp“t: iStus”boa issca!eme:«n
Obtain parameter processoriime ratios
Obtain parameter memory traffic traf fic;
1Sturbo = 0;
1Sscalemem = 0;
if (processoriime ratio > ) then
/* The program has a high processor time proportion
i
1Sturbo = 1;
if (traf fic < «) then
| 1Sscalemem = 1;

end

end
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continued...

Benchmark memory | processor 1Sturbo | 1Sscalemem
traffic time ratio
blackscholes 14 0.993 1 |
bodytrack 5 0.991 1 1
dedup 11 0.963 1 1
fluidanimate 38 0.925 1 0
freqgmine - 0.991 1 0
swaptions 17 0.971 I 0
X264 17 0.907 1 0
canneal 20 0.47 0 0
facesim 17 0.948 1 0
ferret 14 0.932 1 |
streamcluster 32 0.43 0 0
vips 5 0.992 1 1
RandomAccess | 116 0.129 0 0
STREAM 104 0.637 0 0
FFT 113 0.851 1 0
PRANTS 107 0.877 1 0

Normalized energy efficiency

HEl Baseline BN Only processor overclocking HEE algorithm
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CPU-GPU Heterogenous Platforms

* What should be the upper power bound during overclocking?
" Can the bound be dynamic instead of static?

* How can overclocking be coordinated between CPU & GPU?
» Consider a load-imbalance factor?

Target: Constant total energy

. Pinstantaneous » Pupper—bound

. f > fupper—bound

22" nt. Conf. on Algorithms and Architectures for Parallel Processing, Denmark, 2022, DOI: 10.1007/978-3-031-22677-9_14



Adaptive Overclocking Algorithm

START

/

Samp[e(t ): U{CPL' fGPU A ])(CPU IGPU : ‘/;CP(" IGPU ¢ W,

/—

-

L3

UGPU_UCPU

~GPU ~GPU
f t+l — j [} Wt

_ UGPU+uCPU

UpF:: ot [ [ AR
Power PGI’L' S kGI’U 'PGPU )
Controlling ' base
e T R e
Factor 2:

Load Balance

(f ;i'lPU i ,(',P 2 )(— F/ 3 (( f;(‘m_:

+1 2

1579, W,)

N

Next Overclocking Cycle

k = Power upper bound factor (1 < k < 1.2)
U, = Utilization %

= Load imbalance factor
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GPU Undervolting

* There exists about 20% voltage guard-band
on different GPU cards.

* Overclocking & Undervolting will increase
error probability:
= Silent Data Corruption
= OScrash
= Driver error

w1416

w12-14
1-1.2
0.8-1
0.6-0.8

0.4-0.6

* Incremental checkpoint & recovery technique
must be used.

= Additional energy overhead

10204

NUMBER OF FAULTS
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ENERGY REDUCTION (%)

&
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10

10k X 10k matrix multiplication
Platform: GeForce GTX 980
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Cooling

* During overclocking, power levels can
go above TDP.

Die/Chip size | 18mm x 9 mm

IHS/ Lidsize | 37.5mmx 37.5mm x5 mm
Material: Copper

* T; should not go beyond max rating.

™M 1 Indium (k = 86 W/mK),
Thickness = 0.2mm
M 2 Grease (k = 5 W/mK)

Thickness = 0.1 mm

CASE [PACKAGE (Heat Spreader)

M. ... 55

20



continued...

COLD PLATE

21

IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, DOI: 10.1109/TCPMT.2021.3106026
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Cooling at Overclocked Datacenters

Coils condense
vapor into liquid

* Traditionally, air cooling has been employed.
» Mechanical chiller, Water side economizer

* Air cooling won’t be able to keep up with TDP. g}fgﬁfﬁq:ﬁg
* Liquid cooling and immersion cooling is now
becoming the norm. vopor rises 1o
Heat turns
liquid into vapor

23
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Benefits of Overclocked Datacenters

(1) High-performance VM
* Go beyond Turbo

(2) Dense VM packing

* Fight oversubscription

A
5 Guaranteed Turbo Overclocking Domain
~ Domain Domain
[
5
-1
min base all-core 1-core Frequency
e {a) Air cooling  (b) Immersion cooling (c) Boosting VMs (d) Padking VMs
OCt lifetime reduction
OC} no lifetime reduction —
Turbao — — B —
Base e —| L L | d
= S
bt ~l - 1 o~
B iSHSENE = S ||*> ¢S =
g = - - - = >
CPUs CPUs CPUs CPUs
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continued...

(3) Reserve Reduction N N
* Upon infrastructure failure, <] [z - I
recreate affected VM and overclock 7 slzlz] - |s

Used Capacity  Buffer Capacity

Failover Failover
Used Capacity
(4) AUtO-Scahng (=] Hl—sF1:E:F|ﬂm ol (=] O—Fl - =
. . . . = w = < =
* Boost existing VM while new VM is T ™ o A o e
deployed (a) -g .% Scale-out threshold
* Prevent scale-out altogether (b) : 5%
o o S
(b) Scale-up L Time *

25



Issues of Overclocked Datacenters

(1) Power
e Cannot overclock indiscriminately

(2) Lifetime

Failure Mode T?epfziencyv Description

Gate Oxide breakdown v X v | A low impedance source
to drain path

Electro-migration v X X | Material diffuses com-
promising gate structure

Thermal cycling X 4 X | Micro-cracks due to
expansion-contraction

(3) Computational Stability
* Excessive overclocking (>23%) will affect stability.

26



continued...

(4) Environmental impact
* Overclocking at datacenters is a big contributor of CO,.

(5) Cost of ownership

* Immersion cooling can provide up to 7% reduction in cost per physical core in
comparison to air-cooled datacenters.

(6) Workload prediction

* Cloud providers have little or no knowledge of the workloads running inside
the VMs.



Overclocking Smartphones

* Even under default settings, sustained performance-intensive
workloads can trigger thermal throttling.

* THERMACLOCK

" Estimate ambient temperature within 2°C

" Profile workloads to obtain power estimates
» |dentify overclock-safe situations
Evaluation: Three Al benchmarks (image classification, object detection, video upscaling)

Overclock-safe (predicted)

Yes No
: Yes 5,582 2,796
Overclock-safe No 1.835 35.675

Platform: Google Nexus 5

IEEE Int. Symp. on Performance Analysis of Syst. and Software, Stony Brook, NY, 2021, DOI: 10.1109/ISPASS51385.2021.00039



Conclusion

* The thermal challenge lies in managing heat flux (W/cm?) rather than
TDP (W).

* It is often cheaper (when all costs are considered) to buy faster
hardware rather than overclocking an older component.

* Overclocking is worthwhile only if performance gains justify:

v'increased cost of maintenance
v'reduction in reliability and lifespan
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